

REPORT NO. DOT-FAA-AEQ-77-9

STUDY OF SOUNDPROOFING PUBLIC BUILDINGS NEAR AIRPORTS

N-96-01 II-A-921

1 1

Trans Systems Corporation, Vienna, Virginia in Association with Wyle Laboratories

April 1977

FINAL REPORT

Prepa red, for

U. S. DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

Office of Environmental Quality

Washington, D.C. 20591

Technical Report Documentation Page

	2. Government Accession No.	J, Kecipieni i Catalog Na.
4. Title and Subtitle STUDY OF SOUNDPROOF BUILDINGS NEAR AIRPOR	S. Repart Part April 1977 ^{6.} Performing Organization Code	
7. Author's)		SB 3-4-4-8(a) //C-3/2 8. Performing Organization Report No. TS-101
Performing Organization Name and Addre	Wyle Laboratories	10. Work Unit No. (TRAIS)
118 Park Street, S.E.	Wyle Laboratories 2361 Jefferson Davis Hwy.	11. Contract or Grant No.
Vienna, VA 22180	Arlington, VA 22202	13. Type al Repart and Period Covered
12. Sponsering Agency Name and Address Federal Aviation Administr	ation	October 1976-April 1977
Office of Environmental Qu Washington, D.C. 2059	Jality	14. Sponsoring Agency Code
undertaken to develop the r	manamanta or reception to co	
the feasibility, practicabil airports. Costing of soundp and public health facilities	lata and procedures which car ity and costs of soundproofing roofing public buildings inclu near airports.	w 94-333, finis study was to be used to determine public buildings near des: schools, hospitals,
the feasibility, practicabil airports. Costing of soundp and public health facilities	lata and procedures which can ity and costs of soundproofing roofing public buildings inclu near airports.	w 94-333, rhis study was a be used to determine public buildings near des: schools, hospitals,
the feasibility, practicabil airports. Costing of soundp and public health facilities 17. Key Wards Aircraft Noise Imp Noise Measurement; Airport I	act; Aircraft [16. Distribution State and Use; and Use; build buildings inclue near airports.	w 94-33, this study was he used to determine public buildings near des: schools, hospitals, wailable to the U.S. public ational Technical Informati

19. Security Classif. (af fills report) 20. Security Classif. (af this page) 21. No. of Pages 22. Price UNCLASSIFIED UNCLASSIFIED

Form DOT F 1700.7 (8-72)

5

÷.,

Reproduction of completed page authorized

PREFACE

This study was performed under Section 26(3) of the Airport and Airway Development Act Amendments of 1976 (Public Law 94-353, July 12, 1976) which states in part:

"Special Studies

Section 26. The Secretary of Transportation shall conduct studies with respect to - (3) the feasibility, practicability, and cost of soundproofing of schools, hospitals, and public health facilities located near airports."

This study was undertaken by the Trans Systems Corporation, Vienna, Virginia, in association with Wyle Laboratories, under the direction of the Office of Environmental Quality, Federal Aviation Administration.

The opinions, statements, and findings contained within this report are those of the contractors, and not necessarily those of the Federal Aviation Administration.

prekgengenten internitioningen en teknologische statisk T

water and the second of the second states and the second

Spakel Wess Yes Kaser Multiply by To Fied Spakel The inches 314 continuence of a second matrix a a		Approximate Co	nversions tu Metri	c Measures				Approximate Conve	rsions from Mat	ric Measures	
LENGTH	Symbol	When You Xnow	Multiply by	Ta Find	Symbol		ymb o l	When Yes Knew	Multiply by	To find	Symbai
$\frac{1}{1} = \frac{1}{1} = \frac{1}$.	LENGTI	_	
In inclust 1.6			LENGTH								-
In inchat 11.6 Continuents				•			N.	miljinetafā	0.04	inches inches	10 (n
In Include 1.4 Continuences Continuences <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Continuers</td><td>0,4</td><td>10 COUR</td><td>te te</td></td<>								Continuers	0,4	10 COUR	te te
It Feat 30 centimizers Cn Million Antes Antes <t< td=""><td>la la</td><td>inches</td><td>*2.5</td><td>Continutors</td><td>Cm</td><td></td><td>1</td><td></td><td>3.3</td><td>rens warde</td><td>vd</td></t<>	la la	inches	*2.5	Continutors	Cm		1		3.3	rens warde	vd
bit yours n n pic AREA AREA pic AREA AREA pic AREA AREA pic agoust factor 0.16 square tarba mile 0.16 square tarba mile pic MASS (weight) mile mile starba mile mile mile mile Doucts 2.4 biotecrea pounds 6.45 biotypens 10 starba mile mile mile mile starba mile <td>4</td> <td>fest</td> <td>30</td> <td>Custimpters</td> <td>C.M.</td> <td></td> <td>1 m</td> <td>til anna inca</td> <td>5.1</td> <td>milas</td> <td>rsi</td>	4	fest	30	Custimpters	C.M.		1 m	til anna inca	5.1	milas	rsi
AREA AREA AREA AREA AREA 10 ² AREA AREA T T T Suppose continues 0.16 square parts 1.2 10 ² aques inches 6.6 square parts m ² m ² square parts 0.11 square parts 1.2 10 ² aques inches 0.6 square parts m ² m ² square parts 1.2 square parts m ² 10 ² square parts 0.16 square parts 0.17 square parts 0.14 square parts 1.2 square parts m ² 11 square parts 0.14 square parts 0.14 square parts 1.2 square parts m ² 12 square parts 0.14 square parts 0.14 square parts m ² 12 square parts 0.14 square parts 0.14 square parts m ² 13 square parts 0.14 square parts 0.14 square parts m ² 14 square parts 0.23 square parts square parts m ² square parts square parts m ² 15 square 0.45 billippares 1 square </td <td>y4</td> <td>yards</td> <td>0,9</td> <td>meters</td> <td>m</td> <td>····· ································</td> <td>10</td> <td>e lichelaie</td> <td>0,0</td> <td></td> <td></td>	y4	yards	0,9	meters	m	····· ································	10	e lichelaie	0,0		
AREA	mi	miles	1.6	kilometers.	yur	ē *					
Ind Appuse inches 6.6 Supers continuities 0.16 Supers continuities 0.16 No Appuse fast 0.00 Supers continuities 0.16 Supers continuities 0.16 No MASS (weight) No MASS (weight) MASS (weight) No MASS (weight) No Mass (weight) No Mass (weight) <td></td> <td></td> <td>AREA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AREA</td> <td></td> <td></td>			AREA						AREA		
101 11 12 12 12 13 100 13 13 100 13 100 13<							m ³	south continuints	0.16	square inches	in 1
h1 might fest 0.05 signer setues might might setues m	is ¹	aquais inches	4.6	square centimeter	s cm²		2	aguáró meteri	1.2	squire yards	w12
milit milites 0.3 square nettes milites milit 2.4 bectanse be	tu ³	acuse feat	0.05	equere meters	a		<u>`</u> 2	assare kilometera	0.4	squere miles	
		equipe yard a	0.8	Aguara majara	m ²			hecteres (10,000 m ²)	2.5	Acres	
Acres 100 0.04 because he because		equera miles	2.6	equate hitometers	km²		-				
MASS (weight) MASS (weight) et Dunces 24 pounds 0.46 phonds 1 phonds 0.46 phonds 1 phonds 0.46 phonds 1 phonds 0.46 phonds 0.46 phonds 1 phonds 0.46 phonds 0.46 phonds 0.46 phonds 0.46 phonds 0.46 phonds 0.46 phonds 0.24 phillipera 1 phonds 0.24 phillipera 1 phonds 0.27 phonds 0.28 phillipera 1 phillipera 0.28 phillipera 1 phillipera 1 phillipera 1 phillipera 1		ACIDE	0.4	hectares	ha						
et Dunces 23 pounds 6.46 billograms 50 pounds 2.2 pounds 2.2 pounds 2.2 pounds 1.0 bill for tons 1.0 b			AASS (weight)					<u></u> M	ASS (weight)	-	
sta Dunicas 28 grama 9 is pounds 0.46 bilograma 19 shart tons 0.9 isones 1 <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i> <i>VOLUME</i>								diama.	0.035	OWICES	68
is pounds 6.46 bilograms by short time 6.8 torones 1 (2000 lb) VOLUME torones 1 VOLUME VOLUME torones 1 VOLUME torones 1 VOLUME torones 1 VOLUME VOLUME torones 1 torones 1 VOLUME VOL	64	Dunces	28	(prantin a	9		a	à l'amana.	2.2	pounds	6 6
short teria 0.9 tonics 1 (200 lb) VOLUME VOLUME tablespoons 15 millifines ni i c c cups 0.22 interes 1 ti c cubic maters 2.1 pints pi i c cubic maters 1.3 cubic maters 1 pi cubic raters 1.3 cubic maters 12 ref pints 0.47 tilters 1 ref cubic maters 15 ref pints 0.47 tilters 1 ref cubic maters 15 ref pints 0.78 cubic maters 15 ref pints 0.78 tilters 1 ref cubic maters 15 ref pints 0.78 tilters 1 ref pints 0 ref pint	16	borruga	0.46	kilograma	kg –		•	topone (1000 kg)	1.1	short tons	
Labor is registered in regist		phani (orta chani tata	0,9	tonnes	1						
tap tasapoona 5 millifiters mil 1 millifiers mil 1 millifiers mil 1 millifiers millifier		(toot int				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		,			
table teaspoorie 5 millifilities millifilities millifilities millifilities millifilities millifilities 0.03 thild bunces I can be spoorie 11 act (field bunces 15 millifilities millifilities millifilities pi 6 Cupe 0.24 illers 1 millifilities 0.25 gallons pit 6 Cupe 0.25 gallons 0.25 gallons pit 7 pits 0.23 tillers 1 millifilities pit 91 gallons 0.25 gallons 1.3 cubic maters jit 921 Gubic feel 0.03 cubic maters millifilities millifilities 923 Gubic feel 0.74 cubic maters millifilities millifilities 924 Gubic feel 0.03 cubic maters millifilities millifilities 924 Gubic feel 0.03 cubic maters millifilities millifilities 924 Gubic feel 0.74 cubic maters millifilities millifilities 924 0.74 temperature 5/9 (atter cubic maters millifilities 924			VOLUME						Anthus	-	
Thep tablespons 16 millifiers millifiers millifiers millifiers millifiers millifiers millifiers millifiers pints	tan	leasuuns	6	milliliters	ίπ.		4	avit())ters	0.03	tiuld punces	11 64
If act (find punces 36 mellificers mill u 1 Iffers 1,06 queries 91 pit 0,24 (filters 1 millifiers 1 Milers 35 Galina 92 pit 0,25 (filters 1 millifiers 1 Milers 0,26 galina 92 queries 0,25 (filters 1 millifiers 1 Milers 35 cubic feat 11 queries 0,25 (filters 1 millifiers 1 Milers 35 cubic feat 14 queries 0,25 (filters 1 millifiers 1 Milers 35 cubic feat 14 queries 0,25 (filters 1 millifiers 13 cubic feat 13 quarts 0,03 cubic maters m3 maters m3 maters m3 cubic maters 8/5 (then Fabranheit state quart subtracting temperature subtracting temperature subtracting 100 120 result subtracting temperature subtracting temperature subtracting 100 120	Thep	Lablespoorsa	15	millilitærs	an l			(fiere	2,1	pinis	pi
c cups 0,24 illers 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	llat	fluid punces	30	100] š į š į stato 26	rs.	• - <u>-</u>		liters.	1,06	quarts	6 1
pi plints 0.47 illera i endic set 1000 feat 1100 feat 11	6	cupt	0,24	liters	1		•	liters	0,26	gationa	641
41 querts 0.85 Illere 1 981 0pillons 1.8 illeres 1 991 0pillons 1.8 illeres 1 11 ³ cubic feel 0.03 cubic maters m ³ yd ³ cubic feel 0.03 cubic maters m ³ 11 ⁴ cubic feel 0.03 cubic maters m ³ 11 ⁴ cubic feel 0.03 cubic maters m ³ 11 ⁴ cubic feel 0.03 cubic maters m ³ 11 ⁴ cubic feel 0.03 cubic maters m ³ 11 ⁴ cubic maters 1.3 Cubic feel 11 ⁴ <t< td=""><td>p4</td><td>pints</td><td>0.47</td><td>litern</td><td>1</td><td> <u> </u></td><td></td><td>Cubic metera</td><td>36</td><td>subic feet</td><td>8.1</td></t<>	p4	pints	0.47	litern	1	<u> </u>		Cubic metera	36	subic feet	8.1
pel gellons 3.18 illers 1 tr' cubic feel 0.03 cubic mellers m ³ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	q)	querts	0.95	fiter a	I.	m	7	Cubic metars	1.3	Choic Aside	te .
If subjects Cubic feel 0.03 Cubic maters m² Yell Cubic seria 0.78 Cubic maters m² Image: Strange TEMPERATURE (asact) Yell Fabranheit S/B (atter Calsius °c Image: Strange °c Image: Strange <t< td=""><td>9<u>0</u>1</td><td>Gallons</td><td>3,8</td><td>liters</td><td>1.</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	9 <u>0</u> 1	Gallons	3,8	liters	1.						
Yd Gubic yerda 0,74 Cubic melere m* T TEMPERATURE (asact) "G Celsius #G "F Fahranheit 5/9 (alter Celsius °C 323 "G Celsius #G "Imperature 323 Status 100 "Imperative 323 Status 100 "Imperative 323 Status 100 "Imperative 320 Status 100 "Imperative 31 320 31 "Imperative 31 320 31 "Imperative 31 320 31 "Imperative </td <td>h</td> <td>cubic feet</td> <td>0.00</td> <td>cubic maters</td> <td>m</td> <td></td> <td></td> <td>TEMP</td> <td>CRATINE Inver</td> <td>11</td> <td></td>	h	cubic feet	0.0 0	cubic maters	m			TEMP	CRATINE Inver	11	
TEMPERATURE (asact) "C "F Fahranheit 1emperature 32}	¥q.	cubic yards	0,76	cubic melore	m*			1 E MIT	CINTONE (STAL	4	
*F Fahranheit B/B (atter Celaius *C		TEMP	EBATURE (asact)				6	Celsius	9/5 (then	Fahranhait	*e
Partnemment Drivere Cartering Cartering <t< td=""><td>*-</td><td>Franchalt</td><td>K/9 inter</td><td>Calaina</td><td>• •</td><td></td><td></td><td>(and as write a</td><td>all 321</td><td>e persona possili de</td><td></td></t<>	*-	Franchalt	K/9 inter	Calaina	• •			(and as write a	all 321	e persona possili de	
32) 1 (m 2 7.44 [stact(ly), for other wasc) closer/bina and stude detailed tables, are HIS Mine; P.dl, 290, Units of Resplice stat Massures, Price \$2.25, SD Cetailog No. (C3.102/B0), Units of Resplice stat Massures, Price \$2.25, SD Cetailog No. (C3.102/B0), Units of Resplice stat Massures, Price \$2.25, SD Cetailog No. (C3.102/B0), 1 (m 1 2 (m 1		Tamuratur D	subtracting	lemotalure	•						
		10.1pt 11-1-	32)				•	7 32	984	źź	1
*/ in 2.26 (exactly). He other wasch Classer billing and mixer defailed tables, see HIS Mixe; Publ, 250, Units of Results and Massures, Price \$2.25, 50 Cetalog NG, C13.10:280, C13.10, C13.10, C13							⊷4	0 0 40	BQ 120	160 200	
Units of Results And Marsures, Price #2,25, 6D Cetalog No. C13.10/280,	* ++ = 7.54	Jesectly). For other wards cars	entension and more detailed	I tables, see fins Mosc, P.	LI, 286,			_{┇╼┹╼╋╼┹╗} ┇┉┛╓┸╼╫ <mark>┱┹╼</mark> ╆╍	╺┷		b
	Units of Weigh	his and Measures, Pice \$2.25, I	6D Celalog No, CIJ.10:28	ú,			-:	0 -20 U C	\$7		
						<u> </u>		-			

جهرجي الجارب

4

METRIC CONVERSION FACTORS

₹'

an co

There was been and

TABLE OF CONTENTS

Cha	pter		Page
	Pref	ace	111
	Exe	cutive Summary	S-I
1.0	INT	RODUCTION	1-1
2.0	DET	ERMINATION OF THRESHOLD LEVELS	2-1
	2.1 2.2 2.3 2.4 2.5	Application and Definition	2-1 2-2 2-3 2-6 2-6
3.0	NO	ISE ATTENUATION OF BUILDINGS	3-1
	3.1 3.2	Prediction of Building Noise Reduction	3-3 3-3
		3.2.1 Commercial Jets	3-3 3-7
	3.3	Prediction of Noise Reduction	3-7
		3.3.1Selection of Study Buildings3.3.2Building Use and Construction Information3.3.3Calculated Noise Reduction	3-9 3-12 3-12
4.0	FIELI	D MEASUREMENTS AND INVESTIGATIONS	40
	4.1 4.2	Purpose	4-1 4-1
		4.2.1 Instrumentation 4.2.2 Building Noise Attenuation Measurements 4.2.3 Sound Absorption Measurements	41 4-2 4-4
	4.3	Results of Measurements	4-4
		4.3.1 Measured Noise Reduction 4.3.2 Measured Absorption 4.3.3 Measured Aircraft Noise Levels	4-4 4-5 4-5

4

v

		TABLE OF CONTENTS (Cont'd.)	
Chap	ter		Page
	4.4	Investigation of Buildings	4-5
5.0	SOUN	DPROOFING APPLICATION AND BENEFITS	5-1
	5.1	Soundproofing Application	5-1
		5.1.1 Soundproofing Principles 5.1.2 Rehabilitation of Existing Buildings 5.1.3 Soundproofing New Construction	5-1 5-2 5-4
	5,2	Soundproofing Benefits	5-6
6.0	COST	S, FEASIBILITY, AND PRACTICABILITY	6-1
	6.1	Costs	6-1
		6.1.1Cost Prediction Methodology6.1.2Cost Data Base6.1.3Costing Application6.1.4Program Costs6.1.5Cost Benefits	6-1 6-1 6-4 6-7 6-15
	6.2	Feasibility and Practicability	6-23
		6.2.1 Feasibility	6-23 6-23
	6.3	Evaluation of Eligibility and Priority	6-23
		6.3.1Eligibility and Priority6.3.2Technical Evaluation6.3.3Priority of Programs	6-23 6-25 6-25
7.0	NATIO	DNWIDE NOISE IMPACT	7 -
	7 . l	Criteria and Methodology	7-1
		7.1.1 Impacted Areas Around Airports 7.1.2 Analytical Process	7- 7-
	7.2	Nationwide Impact	7-3
8.0	CONS	ULTATION AND FINDINGS	8-1
	8.1 8.2	Expressed Views	8-l 8-3

i.

}

.

		TABLE OF CONTENTS (Cont'd.)	
Cho	ptor		Page
	Gloss	ary of Terms	GL-I
	Biblio	graphy	B I - I
APP	ENDICE	5	
A	TECH THRES	NICAL SUPPORTING INFORMATION FOR DEFINITION OF SHOLD LEVELS OF NOISE EFFECTS	A-1
	A-2	Psychological and Behavioral Reactions	A-2
		A-2.2 Annoyance	A-2
	A-3	Activity Interference	A-2
		A-3.1 Speech Interference in Schools	A-3 A-6
	A-4	Summary	A-7
B.	DEVE	LOPMENT OF THE EXTERIOR WALL RATING (EWR)	B-1
	B-1 B-2	Exterior-Interior Noise Reduction (NR)	B-1 B-4
		B-2.1EWR ConceptB-2.2EWR for Composite StructuresB-2.3Calculation of the Tabulated EWR ValuesB-2.4EWR Accuracy and Regression Constants	B-4 B-7 B-8 B-9
c.	BUILD		C-1
D.	сом	PLIATION OF BUILDING INVESTIGATIONS	D-I
E.	CALC		E-1
F.	INST		F-1
G.	COM	PARISON OF MEASURED AND PREDICTED NOISE REDUCTION	G-I
	G-1 G-2 G-3	Measured Noise Reduction	G-1 G-1 G-2

۵

TABLE OF CONTENTS (Cont'd.)

<u>Cha</u>	pter	Page
н.	SOUNDPROOFING REHABILITATION WORKSHEETS	H-I
1.	CATEGORY A + B NOISE REDUCTION IMPROVEMENTS	[-]
J.		J-I
к.	STATE AND REGIONAL CONSTRUCTION COST ADJUSTMENT	к-I
L.	REGIONAL DELTA NOISE REDUCTION	L-1
м.	COSTINGS OF SAMPLE BUILDINGS (1977 PRICE)	M-I
Ν.	SUMMARY OF PROGRAM COST BY STATE AND CONSTRUCTION	N-I
ο.	MEETINGS	0-1
Ρ.	STATISTICAL ANALYSIS	P-i
Q.	LIST OF AIRPORTS FOR DATA SHEET - BY FAA REGION	Q-1

č

LIST OF ILLUSTRATIONS

	Page
Overview of the Study	1-2
Hypothetical Histogram	2-1
Articulation Index	2-5
Sleep Interference	2-7
Commercial Jet Noise Levels	3-4
Geographical Areas	3-10
Calculated School Noise Reduction	3-13
Calculated School Noise Reduction	3-14
Calculated Hospital Noise Reduction	3-16
Calculated Hospital Noise Reduction	3-17
Microphone Arrangement	4-3
TL Curve for FWR Concept	B_4
Typical Highway Noise Spectra	B-5
Standard Highway Noise Spectrum	8-5
Calculated Shape for Standard Curve	B_6
Exterior Wall Rati na Standard Curve	B-10
Aircraft Noise Spectrum	B_11
Confidence Limits	6-10
Distribution of Measured Aircraft Noise	G_10
	Overview of the Study Hypothetical Histogram Articulation Index Sleep Interference Commercial Jet Noise Levels Geographical Areas Calculated School Noise Reduction Calculated School Noise Reduction Calculated Hospital Noise Reduction Calculated Hospital Noise Reduction Calculated Hospital Noise Reduction Microphone Arrangement TL Curve for EWR Concept Typlcal Highway Noise Spectra Standard Highway Noise Spectrum Calculated Shape for Standard Curve Exterior Wall Rating Standard Curve Aircraft Noise Spectrum Confidence Limits

4

LIST OF TABLES

Table		Page
3-1	Commercial Jet Fleet	3-6
3-2	Jet Noise Levels	3-8
4-1	Interior Absorption Coefficients	4-6
6-1	Summary of Construction Costs	6-8
6-2	Region A Costs	6-9
6-3	Region B Costs	6-!0
6-4	Region C Costs	6-11
6-5	Region D Costs	6-12
6-6	Region E Costs	6-13
6-7	Region F Costs	6-14
6-8	Energy Savings	6-22
7-1	Nationwide Impact	7-4
B-1	Correlation Coefficients	B-12
8-2a	EWR Values	B-13
B-2b	EWR Values	B-14
B-3	Adjustments to EWR Values	B-15
B-4	Venting Attic Space and EWR Value	B-16
B-5	Insulation and EWR Value	B-16
B6	EWR Values for Common Window Assemblies	B-17
B~7	EWR Values for Commonly Used Doors	B-18
D-I	Summary of Building Investigation	D-1
D-2	Denver Investigations	D-2
D-3	Phoenix Investigations	D-4
D-4	Boston investigations	D-5
D-5	Miami Investigations	D-7
D-6	Atlanta Investigations	D-9
D-7	Overall Rooms and Windows	D-11
D-8	Hospital Windows and Rooms	D-!2
D-9	School Rooms and Windows	D-13
E-1	Calculated Noise Reduction – LAX	E-1
E-2	Calculated Noise Reduction – PHX	E-2
E-3	Calculated Noise Reduction – MIA	E-3
E-4	Calculated Noise Reduction – BOS	E-4
E-5	Calculated Noise Reduction – ATL	E-5
E6	Calculated Noise Reduction - DEN	E-6
G-1	Measured Levels and Noise Reduction – LAX	G-3
G-2	Measured Levels and Noise Reduction - BOS	G-4
G-3	Measured Levels and Noise Reduction – DEN	G-5
G-4	Predicted and Measured Noise Reduction – LAX	G-6
G-5	Predicted and Measured Noise Reduction – BOS	G-7
G-6	Predicted and Measured Noise Reduction – DEN	G-8

x

LIST OF TABLES (Cont'd.)

Table

Page

G-7	Summary of Differences in NR	G-9
-1	Category A + B Noise Reduction Improvements – LAX	1-2
-2	Category A + B Noise Reduction Improvements – PHX	1-3
-3	Category A + B Noise Reduction Improvements – MIA	1-4
-4	Category A + B Noise Reduction Improvements - BOS	1-5
-5	Category A + B Noise Reduction Improvements - ATL	1-6
-6	Category A + B Noise Reduction Improvements – DEN	1-7
K-1	State and Regional Cost Adjustment Factors	K-I
<-2	Regional Cost Adjustment Factors.	K-4
1	Regional A NR by Category	L-1
N-I	Costings of Sample Buildings - Region A.	M-1
M-2	Costings of Sample Buildings – Region B	M-2
M-3	Costings of Sample Buildings - Region C	M-3
1-4	Costings of Sample Buildings - Region D	M-4
۸-5	Costings of Sample Buildings – Region E	M-5
۸-6	Costings of Sample Buildings - Region F	M-6
N-1	Summary of Program Cost by State and Construction Region	N-I
	, , , ,	

EXECUTIVE SUMMARY

This report is in response to the requirement of the Special Studies, Section 26(3) of the Airport and Airway Development Act Amendments of 1976 (Public Law 94-353). The report sets forth our findings with respect to:

- The feasibility and practicability of soundproofing of public buildings near airports;
- The extent of funding and the priority of such programs;
- The manner in which soundproofing can be carried out; and
- The views expressed by planning agencies, airport sponsors, and other concerned persons or groups.

This study is largely based on existing and on-going research into threshold levels of noise disruption, methods of noise measurement and prediction, and architectural and engineering building noise attenuation. The results include conclusions and supporting data relative to the state, regional, and national impact of aircraft noise; the costs and costing methodology; the benefits of soundproofing; and the views and opinions of state, city, school, and airport officials.

Specific Results

A careful and comprehensive search of the literature provided specific interior threshold levels of noise impact. These threshold levels are levels of noise above which noise interference can occur. The major problem in schools is the disruption of classroom communications. Depending on the actual level of noise intrusion, teachers must shout to be heard; or in many cases, teachers must stop teaching for the duration of the flyover. Often students miss information and assignments. Both teachers and students have reported noise impacted classrooms as uncomfortable, distracting, and not conducive to learning. Reference research indicated that the threshold of disruption in classrooms is approximately 45 dB.

Reference research led to the findings that the major noise intrusion problem in hospitals and public health facilities is the disturbance of sleep. Although the research and medical evidence is not completely clear, sleep is recognized as an integral part of the healing process, and the continual disturbance of sleep can have a negative impact on healing. It was determined that the threshold for the disturbance of sleep was approximately 40 dB. Aircraft noise intrusion at a level above this begins to have a direct effect on sleep.

Soundproofing of schools minimizes and considerably reduces the disruptive effects of aircraft noise on the communication and learning process within classrooms. The soundproofing of hospitals minimizes or reduces the disruption of sleep, thereby improving the recuperative and healing process.

Measurements of exterior and interior noise levels of approximately 10 buildings at each of three airports were undertaken. These included Los Angeles International, Stapleton (Denver), and Logan International (Boston). These measurements were made to support a noise prediction methodology based on the exterior noise level and the basic construction of the building. It was found that the interior noise level, within a classroom or hospital room, could be determined from a knowledge of the exterior noise level and the building construction.

In order to develop a complete representative data bank of hospital and school construction, not only buildings around Los Angeles International, Stapleton, and Logan International were surveyed, but also on-site architectural surveys of impacted buildings around Miami International, Sky Harbor (Phoenix), and William B. Hartsfield (Atlanta), were conducted. Each city was chosen as a representative of a region of differing construction practice. Thus, the 60 buildings surveyed were representative of each of

á

six regions of different construction practice and, in total, representative of all impacted schools and hospitals nationwide.

The next task was to determine the architectural modifications that were feasible in the reduction of aircraft noise. The most common modifications involved windows, either double glazing or filling in. Other modifications that were possible involved wall, ceiling, and roof modifications. Some buildings required the baffling of vents, and the sealing of doors. These modifications were found to reduce the level of noise.

Modifications to the 60 buildings were then costed out to determine average building, room, and square foot costs within each of the six regions. These average figures provided the basis for projecting the national, regional, and state costs.

The magnitude of impact was determined by identifying all schools and hospitals located within the 30 NEF curve, plotted on U. S. Geographical Survey maps. Curves were plotted for all large and medium hub airports, and a sample of small airports. Using a set of single impact contour overlays provided the estimate of external noise. Thus, over 800 impacted buildings were identified and listed. A statistical projection was then applied in order to develop the nationwide population of impacted schools and hospitals. Compilation of these data by construction region as well as by state provided the regional and statewide impacts.

Compilations of these data were used to estimate the cost of modifying all buildings. Cost estimates were computed on the basis of cost per square foot per "delta" noise reduction (ANR) to be achieved. Thus, the cost of any building can be estimated by knowing only the approximate square footage and the NR desired. In addition, statistical projections were performed to estimate the costs to all buildings. The nationwide costs to rehabilitate impacted buildings to feasible and practical limits were calculated to be \$147,800,000 for schools, and \$56,500,000 for hospitals and public health facilities, making a total rehabilitation cost for all buildings of \$204,300,000. The number of schools is 1,057, and the number of students is 707,370. The number of hospital and public health facilities is 89, and number of patients is 30,806. The total number of impacted occupants is 738,176.

The expected benefits of soundproofing were calculated in a variety of ways. One monetary benefit to be achieved by soundproofing is the recovery of lost teaching time. This time has a value since teachers are paid for the time they must waste during the noise interruption. Benefits resulting from improved patient recovery time, and from energy were also calculated.

In the final chapter of this report, the views and opinions of concerned parties are presented, including state, local, and school officials. These opinions were not directly solicited, but rather were noted and documented whenever offered. Generally, soundproofing as a means of alleviating aircraft noise instrusion, is seen as a positive and desirable activity.

S-3

CHAPTER |

INTRODUCTION

This project was undertaken in response to the Special Studies requirements of Section 26(3) of the Airport and Airway Development Act Amendments of 1976.

A study was conducted to determine the impact and potential benefits of soundproofing schools, hospitals, and public health institutions located near airports as a means of alleviating the impact of aircraft noise.

Included within the scope of the study was the measurement of noise at three separate geographical locations, on-site architectural and engineering building investigations of noise impacted hospitals, schools, and public health facilities in six construction regions, and the statistical projection of data to determine the national impact. This effort was based on careful and detailed analyses of the available state-of-the-art and literature reviews in order to study the problems and procedures of soundproofing from all perspectives and in significant depth, providing the development of methodologies, procedures, and results.

The objectives of this study were to:

- Develop a set of data and procedures leading to the determination of the feasibility, practicability, and costs of soundproofing public buildings near airports as a means of alleviating the impact of aircraft noise.
- Determine the magnitude of the problem by quantifying the impact of aircraft noise on occupants in terms of numbers of people exposed to various levels of interior noise.

The study consisted of four basic tasks. The first task involved the application and documentation of current analytical procedures for predicting and assessing the interior noise levels produced in schools, hospitals, and public health facilities due to nearby aircraft operations. Included in this task was the identification of appropriate noise criteria and the verification of predicted interior noise levels by field measurement. Task two was to provide an estimate of the total number of public buildings and occupants exposed to aircraft noise within a specified area around airports. The third task was to develop estimates from a construction cost data base which relates the cost of building construction and rehabilitation to the sound attenuation achievable. The fourth task was to consult with organizations and authorities involved in the aircraft noise problem and establish the current level of understanding regarding the application of building soundproofing. Figure 1-1 shows an overview of the study.

Chapter 2 covers the development and assignment of threshold levels of interior noise. The study required the determination of base levels of interior noise. These levels were not used, nor should they be viewed, as interior noise level standards but rather as a level above which aircraft noise could cause interference with communications in schools and

1-1

sleep in hospitals and public health facilities. The determination of noise threshold levels was made after an extensive state-of-the-art analysis and literature research.

Chapter 3 covers the noise prediction methodology. Within the study's scope, it is neither practical nor feasible to measure every hospital, school, and public health facility to determine the external and internal noise levels; rather a prediction methodology based on wall construction was used. To insure that the noise prediction methodology is accurate, a number of sample measurements was taken to correlate predicted and measured values. Included are the calculated noise reductions for schools, hospitals, and public health facilities located around Los Angeles International Airport, Stapleton Airport, Sky Harbor Airport, Logan International Airport, Miami International Airport, and William B. Hartsfield Airport.

Chapter 4 provides the techniques and methodology of noise measurement. Included is a technical discussion of the equipment and procedures for measuring noise levels. Architectural and engineering building investigation methods are also discussed.

Chapter 5 discusses the soundproofing techniques that are appropriate and feasible for modifying schools and hospitals. Rehabilitation principles and applications are defined.

Chapter 6 is devoted to developing the architectural and cost estimates of soundproofing, determining a cost and costing methodology, quantifying benefits, and developing priority funding requirements. Architectural estimates involve the determination of just what modifications can be made to a building and the limits that exist.

Costs of modifying sample buildings are discussed, and projections on a state, regional, and nationwide basis are presented. The costing methodology is outlined and explained.

đ

Cost benefits are presented relative to the potential recovery of lost teaching time, lost student time, and energy conservation. The major benefit of soundproofing schools would be an improvement in the quality of classroom communications. The benefit of soundproofing hospitals and public health facilities would be an improvement in conditions associated with health care and patient recovery. These benefits have value, and the value has been quantified in terms of dollars.

Procedures and methods for determining priorities and criteria regarding decisions on the implementation of soundproofing for schools, hospitals, and public health facilities are provided.

Chapter 7 identifies, through procedural development, the state, regional, and nationwide impacts. Included is a determination of the number of schools, hospitals, and public health facilities impacted by aircraft noise; and the number of students and patients that are similarly impacted.

Chapter 8 covers a summary of the views and opinions expressed by local public officials regarding the concept of soundproofing as a means of alleviating the impact of aircraft noise. Findings reached by the contractors during the performance of this study are also included.

The appendices in this report contain detailed data as to the results obtained, the observed data, and the background of techniques used in the measurement and analysis. The data relative to threshold levels, exterior wall rating (EWR), calculated and predicted noise reduction are presented. Cost details including correction factors, costs per delta noise reduction, costs of sample buildings, and overall program costs are also included. In addition, a listing of people who offered views and opinions is provided.

2

CHAPTER 2

DETERMINATION OF THRESHOLD LEVELS

The objectives of this study required that threshold levels be established for noise effects on people in public buildings around airports. Since aircraft noise levels ordinarily encountered in buildings do not present a hearing-loss hazard to the building occupants, the threshold levels developed in this chapter were derived in terms of avoiding interference with noise-sensitive activity.

2.1 Application and Definition of Threshold Levels

Noise exposure in public buildings due to aircraft operations covers an extensive range of levels. To provide a lower bound for defining the magnitude of noise impact and projecting the application of soundproofing requirements, it was necessary to identify appropriate noise threshold levels. The noise thresholds identified in this study should not, however, be taken as acoustic criteria or specifications which define building noise attenuation requirements. The establishment of such standards requires a more thorough characterization of the building interior noise environment.

An illustration of the application of these threshold levels is shown in Figure 2-1.

FIGURE 2-1. HYPOTHETICAL HISTOGRAM OF AIRCRAFT NOISE EXPOSURE FOR ALL OCCUPANTS WITHIN PUBLIC BUILDINGS INSIDE NEF 30 CONTOURS AROUND AIRPORTS. THIS ILLUSTRATES HOW THRESHOLD LEVELS FOR NOISE EFFECTS ON OCCUPANTS WILL ESTABLISH LOWER BOUND FOR EVALUATION OF FEASIBLE SOUNDPROOFING. As shown, the threshold levels would establish a lower bound for application of feasible soundproofing measures. As indicated in the figure, it is anticipated that the maximum feasible range for soundproofing will be less than the total range between the threshold levels and the maximum limit of exposure. Thus, accurate definition of these threshold levels is clearly of paramount importance in establishing what portion of the occupants in public buildings exposed to levels above the threshold levels could benefit from feasible soundproofing.

The noise metric used in this study to express threshold level is the maximum A-weighted noise level in decibels (or for short, dBA) of an individual aircraft noise event. This choice of metric allows the data developed in the study to be expressed in a fundamental format, readily adaptable for use in comparing the relative costs of soundproofing.

2.2 Effects of Noise Pertinent For Establishing Threshold Levels

The adverse effects of noise exposure on people can be grouped into three general categories: degradation of health, attitudinal reactions, and activity interference. In general, the noise levels defining the threshold of interference with certain noise-sensitive activities (i.e., sleep and speech) are lower than those associated with the other two categories of adverse effects. For this reason, activity interference will be the criterion used in establishing threshold noise levels for each of the public building types considered. The detailed technical supporting data and references used to establish the threshold noise levels based on activity interference and the relationship of these threshold levels to other adverse effects of noise exposure are presented in Appendix A.

Although a variety of activities may be associated with any one building use, activities can be identified for each building type on the basis of primary activity requirements and susceptibility to noise intrusion. In the present study, the particular building types to be considered are schools, hospitals, and public health facilities. For schools, the primary consideration for interior noise is speech communication. For hospitals, the primary activity of importance in regard to the noise environment is sleep. With the assumed functional similarities between hospitals and public health facilities, it is reasonable to assume that the primary activity for many public health facilities is also sleep. However, for those cases where sleep is not a normal activity in a public health facility, threshold levels established for speech interference in schools will be more appropriate.

Based on the considerations described above, a literature review was conducted to determine those noise levels below which interference with the activities of speech and sleep would not occur. The results of this review, presented in Appendix A, are summarized in the following two sections with particular attention given to their application to schools and hospitals exposed to aircraft noise. Based on the results of this review, threshold noise levels for the onset of activity interference are estimated.

2.3 Threshold Levels For Speech Interference

The aircraft noise transmitted to the interior of buildings will be considered a background noise capable of interfering with speech communication. Such interference is a function of several factors:

- Noise level and spectral content of the background noise at the listener's ear.
- Spectral characteristics and voice effort of the speaker.
- Propagation of the speaker's voice to the listener(s). For typical indoor communication, conducted without the aid of any amplification, this propagation depends upon the separation distance between the speaker and listener(s) and the reverberation in the room.

For speech communication in a classroom situation, at least two additional factors are also pertinent:

- A noise environment which is conducive to learning is required.
 (For example, repeated short-term disruptions of speech communication can degrade the efficient flow of verbal instruction and lessons.)
- Children are not as familiar as adults with language and, therefore, according to studies identified in Appendix A, should have lower background noise levels to achieve the same degree of speech comprehension as adults.

Considering all these factors, the following procedure was used to make an estimate of the threshold level for speech communication in school buildings.

- Representative aircraft background noise levels were predicted for locations inside a school classroom. These levels were based on extensive data on autdoor aircraft noise spectra and autdoor~indoor noise reduction values of buildings in Wyle's files.
- Published data on the level and spectrum of a female voice using a raised vocal effort was used to estimate the speech level at a conservative distance of 9m (29.5 ft) from the speaker. (Based on the acoustic reverberation measurements conducted in school classrooms for this program, this separation was more than sufficient to place the listener in the reverberant sound field of the speaker's voice.)

 A standard method for predicting speech communication efficiency, based on use of a quantity called the Articulation Index (AI),was employed to predict the amount of speech interference for various levels of aircraft noise inside the hypothetical classroom. The results of this analysis, described in more detail in Appendix A, are summarized in Figure 2-2. This illustrates how AI increases as the background noise level decreases. As indicated by the insert in the figure, the Articulation Index (AI) is a measure of the "area" in a plane of sound level, in decibels, and frequency where the latter is plotted on an empirical scale of frequency increments equally important to speech communication.

From this more abstract measure of speech communication efficiency, it is possible to predict the intelligibility of complete sentences as a more direct measure of communication effectiveness. For an AI of 0.98, studies identified in Appendix A show that 100 percent intelligibility of first-presented sentences and 98.6 percent correct identification from a list of 1,000 Phonetically Balanced (PB) words is obtained for adults. This latter test of speech communication is considered a conservative indicator for the threshold of onset of speech interference in schools.

As indicated in Figure 2-2, an AI of 0.98 is obtained when the background noise level is 45 dBA in the classroom situation considered in this analysis. Further reduction of the background noise level would produce no substantial increase in AI or in sentence intelligibility. Therefore, a level of 45 dBA due to intrusion of aircraft noise inside school buildings is selected as the threshold level for onset of speech interference effects in such buildings. This threshold level is considered a conservative figure suitable for application to this study and is shown, in Appendix A, to be consistent with other suggested limits, published in the literature, for background noise levels in school rooms.

Finally, it is desirable to examine the sensitivity of changes in speech communication to changes in the threshold limit. Table 2–1 summarizes these for values of threshold limit of 50 dBA and 55 dBA.

Background Noise Level, dBA	d % Intelligibilit el, AI of First-Presente Sentences		% Correct Responses 1,000 PB Words
45	0.98	100	98.6
50	0.83	99.4	95
55	0.67	98.6	87.5

TABLE 2-1. SPEECH COMMUNICATION MEASURES AT THREE LEVELS OF BACKGROUND NOISE IN SCHOOLS

Considering 95 percent correct response by adults on the 1,000 PB word test as a conservative upper bound to a threshold limit for speech communication, the choice of 45 dBA has, at most, a 5 dB safety margin. This small safety margin is considered necessary for application in schools for the reasons cited earlier where speech communication with children is critical to the education process.

2-5

2.4 Threshold Levels for Sleep Interference

Because sleep may be crucial to patient recovery, and is a critical activity for patients in hospitals, interference with sleep is the criterion used in the consideration of the noise environment of hospitals. Unlike communication interference, the effects of noise on sleep are not well understood. Experimental research has been concentrated on associating sleep interference with given noise environments. Generally these studies, reviewed in more detail in Appendix A, consider either the awakening of a subject due to a particular noise presentation or a change in sleep stage as determined by physiological indicators.

No clear evidence has been found to establish any one type of noise metric as preferred for evaluating sleep interference effects. Efforts to collapse the wide variety of experimental data in terms of energy-average values of the various types of noise evaluated have only been partly successful. One investigator has, in fact, been able to estimate the approximate change in sleep interference responses simply in terms of A-weighted noise levels.

These estimates, shown in Figure 2-3, indicate the <u>approximate</u> number of people who would (1) have their sleep state changed, or (2) be actually awakened as a function of the A-weighted noise level of exposure. The lines shown should be taken to represent only the estimated mean trend in sleep interference data with results of individual investingators scattering as much as ± 9 dB about the mean trend lines illustrated.

Based on the intercept of the "awakened" trend line in Figure 2-3 with the zero response axis, a level of 40 dBA is selected as a conservative value for the threshold level of noise for patients in hospitals and other public health facilities. The potential scatter of experimental data, obtained primarily under laboratory-like conditions, about these trend lines, makes it difficult to reliably evaluate the sensitivity of this threshold limit for sleep interference to changes in the limiting level. At best, one can point out that increasing the noise exposure above the threshold limit of 40 dBA would cause the expected number of people awakened to increase by approximately 1 percent per dB and the number of people whose sleep state was changed to increase by about 1.3 percent per dB.

2.5 Summary of Threshold Levels

Based on the literature review in Appendix A, interior levels which define the approximate threshold for effects on people have been established for schools, hospitals and public health facilities. The A-weighted levels defining these thresholds are:

SchoolsLA= 45 dBA (Speech Interference)Hospitals (and Public
Health Facilities)LA= 40 dBA (Sleep Interference)

Noise exposure to levels below these is not expected to produce any interference effects on people. While lower levels have been suggested by others, it is believed that the above levels represent realistic measures of the desired thresholds which are supported by the literature.

FIGURE 2-3. COMPOSITE OF LABORATORY DATA FOR SLEEP INTERFERENCE VERSUS MAXIMUM A-WEIGHTED NOISE LEVEL

CHAPTER 3

NOISE ATTENUATION OF BUILDINGS

The objectives of this project required the use of calculation procedures to determine the noise reduction of a building, and to determine the exterior noise environment around airports. The noise reduction calculation methodology is needed to predict both existing noise reduction and as a tool to identify needed modifications for improved noise reduction. The exterior noise prediction, when combined with building noise reduction, provides the interior noise environment to which occupants are exposed.

The reduction of noise by buildings, and the calculation procedures used in this study, are discussed in Section 3.1. The aircraft noise prediction method used, which provides maximum A-weighted noise levels for a median flyover event, is described in Section 3.2. Section 3.3 describes the application of these calculation methods to sixty study buildings located around six major hub airports.

3.1 Prediction of Building Noise Reduction

The noise level inside a room is determined by a balance between noise sources and losses. For buildings impacted by external noise, the noise source is the sound transmitted through the building structure. Losses are due to absorption of sound by interior surfaces. Noise reduction (NR) is the difference between the exterior noise level and the interior noise level due to the exterior noise.

In most cases, exterior sound is transmitted through a number of paths. These consist of airborne paths, such as open windows and vents, and structure-borne paths where the exterior noise causes structural elements (such as walls and window panes) to vibrate. These vibrating elements in turn radiate sound into the interior.

Transmission of sound by airborne paths is straightforward. Except for slight losses due to diffraction and interference effects at the edges, all the sound incident on an opening is transmitted. In most cases, this transmission is nearly independent of frequency. The transmitted sound is proportional to the open area, and has a spectrum similar to that of the exterior sound.

Structure-borne sound transmission is more complex. Only a fraction of the sound is transmitted. The remainder is either reflected or absorbed by the structure. Additionally, because the vibration properties of the structure are involved, transmission is generally frequency dependent. The fraction of sound energy transmitted is proportional to the area of the transmitting element times a frequency-dependent transmission coefficient. In general, the spectrum of the interior noise is different from that of the exterior noise. After sound enters a room, a diffuse reverberant sound field builds up as it is repeatedly reflected from walls and other interior objects. At each reflection, some sound is absorbed so that a steady level is quickly achieved. This level represents a balance between transmission into the room and absorption by interior surfaces.

Transmission and absorption properties are generally frequency dependent, and the usual procedure is to compute noise reduction in several frequency bands. This noise reduction, usually expressed in decibels, is a property of the building and (with reasonable limits) is independent of the amplitude or frequency of the external noise.

If noise reduction is to be expressed in terms of the reduction of a single noise metric which combines several frequency bands (such as the overall or A-weighted noise level), then noise reduction is no longer a property of the building alone. It is also a function of both the exterior noise spectrum and the frequency weighting network to be used.

In the present project, the desired quantity is the interior A-weighted noise level due to aircraft noise, given the exterior A-weighted aircraft noise level. Within this report, the difference between these A-weighted levels will be called simply noise reduction or NR and is in units of decibels (dB).

If a single type of noise source is of interest, with spectra which do not vary greatly from event to event, then the noise reduction can again be defined as a property of the building for an average spectrum. In Appendix B, the concept of a single number transmission loss (as opposed to the usual frequency-dependent curve) is discussed in detail. Basically, if noise reduction of A-weighted noise of a given spectrum is desired, then it is possible to approximate the full transmission loss curve for a given structure by a single number. Calculation of noise reduction of a building may then be done with one set of values, rather than for each frequency band. This single number index of noise reduction in A-weighted sound levels, called the External Wall Rating (EWR), was developed initially for application to noise reduction through structures of highway noise. Highway noise was chosen as the basis because it is the single most prevalent outdoor noise source. EWR was also found to work well for aircraft noise spectra, but with slightly less accuracy than for highway noise. Tables of EWR for common construction are presented in Appendix B following the presentation of the background behind EWR and a brief comparison with another single number measure of transmission loss called Sound Transmission Class (STC).

The noise reduction calculations performed in the present project used the EWR method and EWR values presented in Appendix B. Room absorption values used in the calculations were based on measurements described in Chapter 4. The validity of using the EWR calculation procedure was demonstrated by comparing calculated noise reductions with measurements as described in Chapter 4.

3.2 Prediction of Noise From Aircraft Operations

The noise reduction calculation described above provides the link from exterior noise to interior. To complete the calculation of noise impact, exterior noise levels are needed. In this project, aircraft noise exposure is treated in terms of maximum A-weighted levels. Contours of maximum A-weighted noise levels for jet aircraft were therefore utilized for initial evaluation of the aircraft environments. However, it was recognized at the beginning of this program that a simplified noise prediction method was required in lieu of a complex one that might predict the very wide spread in maximum noise levels (standard deviations on the order of 5 to 8 dB) that one can expect at any single observation point on the ground near airports.

3.2.1 Commercial Jets

.

Based on consideration of the number of aircraft of various types, and similarity of number and type of engines, the majority of the U.S. commercial aircraft fleet may be considered to be comprised of the following five basic types:

- 2-Engine Narrow Body (DC-9, B-737, BAC-111)
- 3-Engine Narrow Body (B-727)
- 4-Engine Narrow Body (β-707, DC-8)
- 3-Engine Wide Body (DC-10, L-1011)
- 4-Engine Wide Body (B-747)

The maximum noise level for each of these aircraft types is a function of engine thrust setting, distance from observer to the point of nearest approach, and atmospheric conditions. Noise levels as a function of distance and thrust setting, at sea level and 15°C, are available from noise data contained in Reference 3-1. Most of the data are based on actual flyover measurements conducted by the manufacturer, and are the data collected by the FAA in the Aircraft Noise Definition (AND) studies; specific sources are documented in Reference 3-1. Figure 3-1 shows the maximum A-weighted noise levels for these five aircraft types as a function of slant range to the flight track at take-off power and at landing power.

Noise contours depend on the altitude and thrust of the aircraft as a function of distance from brakerelease on take-off and touchdown point for landings. Take-off noise contours were constructed based on the following conditions:

- Aircraft gross weight was assumed to be that for a medium-range flight for that aircraft type.
- Standard ATA take-off procedure using take-off power from brake release to 1500' altitude, then cutback to climb power, was assumed.

FIGURE 3-1. NOISE LEVELS FOR COMMERCIAL JET AIRCRAFT

3-4

- Constant climb angle, based on aircraft performance, was assumed at each power setting.
- For elevation angles of less than 10° from observer point to aircraft, the noise levels were adjusted for excess ground attenuation (EGA) using the same method as in Reference 3-1.*

Landing noise contours were constructed for the following conditions:

- 3^o glide slope.
- Landing flap setting.
- Thrust setting corresponding to the glide slope and flap setting.

Contours were constructed for sea level only. Thrust reversal after touchdown was not considered because it is assumed that take-offs will occur on the same runway; take-off noise level is generally higher than landing thrust reversal.

The contours were constructed at 5 dB intervals from 110 dBA to 65 dBA. In most cases, contour levels less than 75 dBA involved trajectory elements where aircraft altitude exceeded 3,000 feet antake-off, so that the assumed climb angle may no longer be correct. In some cases the noise levels were extrapolated beyond a stant range of 10,000 feet, the limit of the basic noise curves. Constructing noise contours out this far was necessary in order to be consistent with the threshold noise levels and calculated noise reductions discussed earlier. Beyond the point where aircraft achieve a 3,000-feot altitude, the contours must be considered to provide nominal values only. Because aircraft do not follow standard thrust and climb procedures at these distances, it is not felt that more precise values could be developed.

The maximum noise levels for each aircraft type in themselves do not provide a useful description of the noise environment. Fleet size and mix considerations would also have to be considered. Within the context of the present study, where typical maximum single event noise levels are desired, the median maximum level is required.

The U.S. commercial jet fleet (represented in terms of the five types noted above) was arranged in order of noise level based on the noise data of Figure 3~1. Total numbers of each type are from Reference 3-1.

The order of noise level differs for slant ranges less than 1,000 feet and greater than 2,000 feet on take-off, and for landings. The rank orders of aircraft by noise level for these three groupings are shown in Table 3-1, with the highest noise level at the top. Between 1,000 and 2,000 feet on takeoff, the maximum thrust noise levels for the three middle type of aircraft are within 2 dB of each other.

^{*} Recent data have been reputed to suggest excess ground attenuation may occur for aircraft elevation angles up to at least 30°. However, the method used in this study for estimating EGA is consistent with Wyle experience in comparing measured and predicted aircraft noise levels in airport sideline areas where EGA is particularly significant.

ake-off, Slant Range < 1,000'		Take-off, Slant Ran	nge > 2,000'	Landing		
Aircraft Type Number		Aircraft Type	Number	Aircraft Type	Number	
3ENB	687	3ENB	687	4ENB	738	
4ENB	738	2ENB	546	4EWB	106	
4EWB	106	4EWB	106	3ENB	687	
2ENB	546	4ENB	738	2ENB	546	
3EWB	80	3EWB	80	3EWB	80	

TABLE 3-1. U.S. COMMERCIAL JET FLEET, RANKED BY MAXIMUM A-WEIGHTED NOISE LEVEL*

* Aircraft with highest noise level listed on top.

At slant ranges greater than 2,000 feet, the take-off median is the two-engine narrow body. Between 1,000 and 2,000 feet, this would also serve as well as the other two middle aircraft. At less than 1,000 feet, the take-off median is the four engine narrow body. The median for landings is the three-engine narrow body.

Rather than use different aircraft for the three groups, the two-engine narrow body contour was used as the representative median aircraft type for purposes of this program. This is considered a reasonable choice for two additional reasons. The maximum noise levels of three- and four-engine narrow body jets will be reduced by the current retrofit program; current two-engine narrow body levels would be more representative of future fleet median levels. Also, Table 3-1 lists numbers of aircraft, not operations. Because two-engine narrow body jets are used on relatively short flights, they would be involved in a greater proportion of take-offs and landings, and thus would be closer to a median event than the fleet numbers indicate.

3.2.2 General Aviation Jets

At general aviation airports not served by commercial jets, typical noise levels may not be taken as commercial jet fleet median levels. As a first approximation, however, the commercial jet contours may be used together with suitable noise level adjustments. Table 3-2 lists these adjustments to be applied to the commercial jet contour for various general aviation jets. These values were obtained from direct measurements of noise from general aviation jets and DC-9 or B-737 overflights at the same locations around airports. The adjustments thus account approximately for observed noise levels on the ground due to both source noise level and flight profile differences between general aviation jets and DC-9/B-737 type aircraft. Source references are documented in Reference 3-2.

3.3 Prediction of Noise Reduction Around Six Major Airports

In order to obtain a data base of construction information pertinent to noise reduction, a field investigation was conducted. Six large hub airports in various geographic regions were chosen for study. At each airport, detailed construction and building-use information was collected for ten buildings. The construction information was used to compute existing noise reduction and as a basis for designing modifications to improve noise reductions. At three of the airports, measurements were made of existing noise reductions.

The selection of the study airports and buildings is described in Section 3.3.1. Section 3.3.2 contains a discussion of the kind of information gathered. Predicted noise reductions, using the EWR method, are discussed in Section 3.3.3.

TABLE 3-2.	ADJUSTMEN	ts to (OBTAIN	GENE	RAL AV	IATION
JET NOISE	LEVELS FROM	2-ENG	INE NA	RROW	BODY	MAXIMUM
NOISE LEVE	EL CONTOURS				•	

;

		Adjustment (dB)	
Aircraft Type	Gross Weight, Ibs.	Landing	Takeoff
2-Engine Turbojet (Sabreliner, Lear Jet)	10 - 20,000	-5	0
2–Engine Turbofan (Dassault Falcon)	20 - 30,000	-5	-10
2–Engine Turbofan (Grumman Gulfstream)	30 - 60,000	0	o
2–Engine HBPR Turbofan (Cessna Citation)	10 - 20,000	-15	15
4–Engine Turbojet (Lockheed Jetstar)	25 - 50,000	+3	+3

Ξ.

3.3.1 Selection of Study Buildings

One objective of this program was to develop a noise reduction data base on a national scale. This required the selection of buildings of a variety of construction types. Because construction practices can vary geographically, the approach taken was to select six study airports, each in a different geographical region, then select ten study buildings around each. The number of airports and buildings was determined by resource and schedule constraints of the program.

Geographical Regions of Similar Construction

It has been found that patterns of construction have established themselves in different areas of the country. Among the things which influence these patterns are climatic conditions, availability of materials, availability of labor, seismic zone, local historical construction trends, and local economic conditions. Figure 3-2 shows a map of the continental United States and the six regions of similar construction. A short description of each area is given below.

Region A: The Pacific Coastline. The climate is relatively mild as far inland as the Sierra Nevada foothills. Additionally, this area contains three major metropolitan sections: San Francisco-Oakland-San Jose complex, Los Angeles-Orange-Riverside-San Bernardino Counties complex, and the San Diego County area. The population concentration is relatively high, bringing with it the influx of skilled trades. Lumber is plentiful as are aggregates for concrete, and most all other standard building materials, explaining the proliferation of stud-and-stucco construction, modified by the higher cost systems such as brick veneers. The higher economic level of a metropolitan and industrial area permits use of more expensive methods and materials for aesthetic purposes. Seismicity for this area is high and is an important consideration.

<u>Region B:</u> Inland Southern California, Southern Nevada, and Southwestern Arizona. Climate is a prime factor; hot, dry summers and relatively mild winters. Closely spaced metropolitan areas do not exist. Lumber is imported, but sand and aggregates for concrete block are plentiful. Therefore, in this area building will have a greater percentage of concrete masonry. As a further incentive, concrete block structures are cool in the long summers. The common stud-and-stucco combination is also popular, as in this area it is again the most economical and durable. Additionally, maintenance is low for stucco in relation to wood, which needs paint more frequently.

Region C: The Gulf Coast and South Atlantic Coastline. This area enjoys a relatively mild climate with high humidity and is subject to violent tropical storms. Clay for brick is relatively abundant, as is local lumber. Therefore, less stud-and-stucco construction is used as it is more susceptible to moisture, and the brick and concrete block construction is more popular. When wood framing is used, it is often protected by brick veneer. Because of the high humidity and generous rainfall, concrete block is often protected by exterior plaster.

and the second second

ing dia print pi

3-10

Region D: Eastern Seaboard and Inland to Central Illinois. Both climate and concentration of population comprise the prime influence here. The climate is quite cold for half the year and insulation properties are important. Both brick clay and local lumber are available, and the labor availability in all trades is generally good.

Region E: Great Lakes (Western) States and Central South. Although these areas have considerably different climates, the average construction is similar due to economics. Lumber is local and plentiful, as is clay for brick.

Away from metropolitan areas, union influence is not so strong, and carpenters are frequently jacks-of-all-trades, laying brick and block, installing gypsumboard or plastering.

<u>Region F:</u> Central States. These areas of different climatic conditions are governed more by economics than by climate. All parts of this area experience below-freezing winters and hot, moderately humid summers. More important, however, is the commonality that, with the exception of very localized spots such as the Seattle-Tacoma area, there is no concentration of urbanization and industrialization; consequently, the economy of the area is the prime factor, and materials and construction combinations giving best insulation at least cost are predominant.

In this region, the carpenter is frequently the general builder. Material influences are again balanced between the easy transportability of lumber and the general local availability of clay for bricks. Thus, the construction norms for different parts of the area arrive at the same result from different reasons.

Basing geographical variation on the six regions shown in Figure 3-2, one major hub in each region was selected. These are:

- Region A Los Angeles International Airport (LAX)
- Region B Sky Harbor International Airport (PHX)
- Region C Miami International Airport (MIA)
- Region D Logan International Airport (BOS)
- Region E Hartsfield International Airport (ATL)
- Region F Stapleton International Airport (DEN)

Selection of Buildings

Around each airport, ten buildings were selected for detailed study. At most airports, eight buildings — considered to be noise impacted — were within the NEF 30 contour, while two non-impacted buildings were well outside the NEF 30 contour. The buildings were selected so as to represent a cross-section of building types. The criteria used for selecting the buildings were based on:
- Building design and construction
- Age
- Proximity to airport
- Exposure to noise environment.

At each city, candidate buildings were first identified with respect to distance from the airport by reviewing topographic maps. Local school and hospital authorities were then contacted for permission to inspect the buildings. In most cases, the regional FAA office made introductory arrangements. Final selection was made on the basis of the criteria noted above.

3.3.2 Building-Use and Construction Information

The data collected for each building covered the following two areas:

- Size, use, and number of occupants
- Construction data required to predict noise reduction

Appendix C contains a worksheet used to record these data. The use information is selfexplanatory. The construction data are those required to compute noise reduction by the method described in Appendix B.

Construction information was gathered by either a construction engineer or an architect. Visible features were noted from direct measurement. Where possible, building plans were examined to determine details not visible. Where plans were not available, details were estimated on the basis of known local construction practice. Appendix D contains a tabulated summary of building-use and construction data.

3.3.3 Calculated Noise Reduction

Noise reduction was calculated for each different type of room in each of the study buildings, using the EWR method. Appendix E contains tabulated values of all the steps in the calculation. These tables quantitatively show the relative importance of each structural component to the transmission of sound into the buildings.

The calculated existing noise reductions, grouped by geographical region and type of building, are discussed below.

Schools

Figures 3–3 and 3–4 summarize the noise reduction of classrooms. Figures 3–3a through 3–3f show the number of classrooms with various noise reduction in each region. Figure 3–4 shows all regions grouped together.

3-13

3-14

Except for Region C, school noise reductions fell into two groupings. Most fell in the range of 16 to 26 dB, with a consistent average of approximately 21 dB. These were traditional style classrooms with large areas of single-glazed windows. Most of the noise transmitted was through the windows. In some areas, exterior doors were important transmission paths, but rarely exceeded windows.

Approximately 10 percent of the buildings in all regions combined have noise reductions in the range 28-32 dB. These were either schools with unusually small windows or which had received some noise reduction treatment. One school had classrooms in which windows had been eliminated. The total sample size is not large enough to identify regional trends in this type of building.

Region C was similar to the other five regions except that two schools had large open vents, resulting in $NR \approx 11$.

Hospitals

Figures 3-5 and 3-6 summarize the noise reduction of hospitals. The sample size is too small to identify any regional trends. In one region (E) no hospitals were visited.

The national distribution, shown in Figure 3-6, is very nearly flat from 18 dB to 28 dB. This is apparently due to the heterogenous nature of hospital design, with window size varying greatly according to architectural style. In all cases windows were the greatest transmission path (see Appendix D), but window area exhibited no trends.

Although the total sample size of hospitals was not large, it is not expected that a larger sample would show any consistent trends not seen in Figure 3-6.

Regional Differences

Except for the two schools in Region C with open vents, no significant differences in existing noise reduction were found among the six regions. This is because windows were the main transmission path in most cases, and these did not vary geographically for the study buildings. Regional differences in construction can be important, however, when considering improving noise reduction, because transmission through other components then becames significant. For example, in those regions where exterior doors are widely used, noise reduction improvement must include door modification.

Average Regional Values

For use in estimating the magnitude of the problem (see Chapter 7), average regional values of existing noise reduction are required. Based on Figures 3–3 through 3–6, the values used are:

- Schools in all regions except C, 90 percent of schools are estimated to have NR = 21 dB and 10 percent have NR = 29 dB. In Region C, 20 percent have NR = 11 dB, 60 percent have NR = 21 dB, and 10 percent have NR = 29 dB.
- Hospitals in all regions, existing noise reduction has a flat distribution from 18 to 28 dB.

ł

• [

005000

A

These values, together with the contours of maximum noise level, are used in Chapter 7 to estimate the numbers of people exposed to various aircraft noise levels.

REFERENCES - CHAPTER 3

- 3-1. Bartel, C., Sutherland, D.C., and Simpson, L., "Airport Noise Reduction Forecast: Volume I – Summary Report for 23 Airports", Wyle Research Report WCR 74-14-1, for the Department of Transportation, October 1974; also DOT-TST-75-3.
- 3-2. "Simplified Procedures for Estimating the Noise Impact Boundary for Small and Medium Size Airports in the State of California", Report to the California Department of Aeronautics, Wyle Laboratories Report No. WCR 72–3, May 1973.

à

CHAPTER 4

FIELD MEASUREMENTS AND INVESTIGATIONS

4.1 Purpose

A part of this study involves the prediction of the noise reduction for a sampling of schools, hospitals and public health facilities located near major airports, as described in Chapter 3. In relation to this effort the purpose of the field measurements was to:

- Validate the building noise reduction prediction methodology, and
- 2) Provide data on the interior acoustic absorption characteristics of the building types of interest.

Determination of building noise reduction was accomplished by simultaneously recording the building interior and exterior noise levels produced by aircraft overflights. At least twelve aircraft events were recorded for each of the rooms under study. The building noise reduction was taken as the average of the difference between exterior and interior maximum noise levels over all events.

Noise reduction measurements were conducted at eight buildings around LAX, and seven buildings each around DEN and BOS. Interior absorption measurements were conducted in all study buildings around each of these three airports.

4.2 Measurement Procedures

4.2.1 Instrumentation

The instrumentation system used in this study consisted of a two-channel magnetic tape recorder equipped with two condenser microphones. A precision sound level meter was used for direct reading of noise levels, and also as an amplifier in one microphone channel. Specific equipment used, with pertinent operating characteristics, is given in Appendix E. The frequency response of each channel of the assembled system was tested by recording and playing back a pink noise signal. The system response was found to be flat to within ± 1 dB over a frequency range of 100 to 8000 Hz. In the field, 1000 Hz calibration tones were recorded before each set of measurements.

4.2.2 Building Noise Attenuation Measurements

Exterior Microphone Placement

In order to measure the noise at the room locations, the exterior microphone was placed directly on the exterior classroom wall. A wall facing the aircraft flight path was always used. In most cases this corresponded to the wall with the most window area. The microphone, together with its windscreen, was taped in place, so that the distance from the microphone cartridge to the wall was approximately 1½ inches, the radius of the windscreen. No detectable difference in measured noise level was noted between positioning the microphone over window glass or external wall structure.

The wall mounting was used to avoid microscale variations in measured level due to local geometry and to avoid problems with interference patterns. The benefits are the same as in the current trend toward using ground-surface-mounted microphones rather than microphones a few feet above the ground, 4^{-1} , 4^{-2}

Due to noise reflection from the exterior walls, it was necessary to apply a correction factor from the measured exterior noise levels to express the noise data in terms of free-field values. For a flush-mounted microphone on a rigid wall this correction factor is a subtraction of 6 dB from the measured level to obtain the free-field level. In practice, due to the spacing of the microphone from the exterior wall surface coupled with sound scattering from ever-present surface irregularities, the actual correction to free-field is slightly less. From previous noise measurements taken at a variety of building surfaces it was determined that a correction of approximately 5 dB provided the most realistic estimate for typical building surfaces. The use of a 5 dB correction was additionally verified by comparing surface-mounted and free-field noise measurements taken at the initial building studied in the field investigation.

Interior Microphone and NR Measurement

1

Interior noise measurements were made at four locations within each room. Figure 4-1 shows the arrangement of interior and exterior microphones. The interior microphone points are at locations dividing the room dimensions into thirds. Three flyover events were recorded with the interior microphone at each location shown, for a total of twelve events. At two points the microphone was at a height of 1/3 the floorto-ceiling distance; at the other two it was 2/3. Inside and outside data were recorded simultaneously on the two-channel recorder. Calibration tones were recorded before each set of twelve. These measurements were subsequently reduced by A-weighting and displaying on a graphic-level recorder. Maximum A-weighted levels were obtained from the graphic-level recorder charts.

4.2.3 Sound Absorption Measurements

Two methods were used to measure interior acoustic absorption. At the study buildings around LAX and DEN, the procedure used was to measure noise levels produced in a room by a standard noise source. For the acoustic absorption measurements at the study building around BOS, the standard reverberation time method⁴⁻³ was used.

Noise Source Method

As discussed in Chapter 3, noise level inside a room is determined by a balance between noise sources and absorption. If a known source is placed in a room and noise level measured, then absorption may be immediately obtained from this balance.

The source used was an ILG constant power noise source. This consists of a squirrel cage impeller driven at constant speed by an AC electric motor. It produces pink noise with octave band sound power levels of 81 dB, re: 10^{-12} watts. Measurement procedure consisted of placing the ILG in the approximate center of the room and taking direct readings with the sound level meter at four locations, in octave bands from 63 to 8000 Hz. In a few cases, the sound levels were recorded, then reduced by playing back through the sound level meter.

Reverberation Time Method

In the study buildings around BOS, absorption was measured by the standard technique of recording an impulsive noise, then obtaining reverberation time by subsequent data reduction. The technique employed was that described in Reference 4-3. Medium-weight red balloons with inflated size of approximately 10" x 7" were used. Two bursts were conducted in each room. Data were reduced to obtain absorption in each octave band from 63 to 8000 Hz.

4.3 Results of Measurements Near Three Major Airports

4.3.1 Measured Noise Reductions

Measured noise reductions are shown in Appendix G. The tabulated values shown for each room are the average over all measurements. The standard deviation for measured noise reduction is shown for each room. Variation in each room is due to a combination of variation of aircraft spectra plus the usual point-to-point noise variation in a room.

A comparison of measured and predicted noise reduction is also presented in Appendix G, together with a statistical analysis of the differences. This analysis shows that the variations obtained in the measurement program are consistent with the computed confidence limits presented in Appendix B for application of EWR to aircraft noise. The use of EWR as the calculation procedure in this project is thus well validated.

4.3.2 Measured Absorption

Table 4-1 shows the absorption coefficients obtained for several combinations of room absorption features. Absorption values for classrooms and hospital rooms shown in Appendix E for LAX, BOS and DEN are the actual measured values, in sabins.

For classrooms, absorption values were on the order of 800 sabins with negligible variation introduced by the presence of students. The minimal variation in total absorption due to students was due to the low (2 sabins per child based on 4.75 sabins for adults⁴⁻⁴) acoustic absorption introduced by the presence of each child. For a typical classroom occupancy of 25 children, the additional absorption comes to 50 sabins, amounting to less than 7 percent of the total absorption. Absorption measurements of several classrooms with and without students showed no significant difference, confirming this result.

For hospital rooms, measured absorptions ranged from 125 to 520 sabins depending primarily on room size. A typical value for a one- or two-bed patient room was 150 sabins.

4,3.3 Measured Aircraft Noise Levels

Although validation of the aircraft noise model discussed in Chapter 3 was not an objective of the measurement program, over 500 exterior noise events were recorded in the course of the NR measurements. A comparison of measured levels with predictions from the fleet median noise contours is presented in Appendix G. The predicted levels were slightly conservative, but fell in a reasonable range relative to the spread of measured levels.

4.4 Investigation of Buildings

In order to develop basic data and procedures to determine the feasibility, practicability and cost of soundproofing buildings near airports, field investigations of selected schools and hospitals were made for each construction region as discussed in Section 3.3.1.

Approximately ten (10) buildings were selected within each of the airport noise impacted areas as well as other non-impacted areas.

Field investigation of buildings and noise measurements of rooms most closely affected by aircraft noise were conducted simultaneously at the following sites: Logan International Airport (Boston, Massachusetts), Los Angeles International Airport (Los Angeles, California), and Stapleton International Airport (Denver, Colorado). Building investigations were conducted at the following airport sites: Sky Harbor Airport (Phoenix, Arizona), William B. Hartsfield International Airport (Atlanta, Georgia), and Miami International Airport (Miami, Florida).

Absorptive Materials	Classrooms	Hospital Rooms
None	.17	.23
Acoustic Tile or Carpeting or Drapes	.21	.27
Two of the Above	.30	.40

TABLE 4-1. SUMMARY OF MEASURED AVERAGE INTERIOR ABSORPTION COEFFICIENTS

Roof and ceiling construction were categorized by entries for single joist or attic space construction, roof slab or deck construction, rafter spacing, joist spacing exterior materials, ceiling material, insulation and whether vented or unvented attic space.

Roof construction entries included concrete, wood or metal deck and thicknesses, rafter spacing, and joist spacing (if attic space construction).

Exterior material included entries for wood or composition shingles, built-up roofing and the number of plys, concrete or concrete tiles and other materials.

Four types and thicknesses of ceiling material are listed and a space for other types of ceiling materials.

Insulation type and thicknesses had an entry space.

Attic space was checked as vented or unvented.

Because windows are a main source of noise transmission, the following details were noted on the form: the number of windows per room; the window size; the thickness of glass; whether laminated; the number of plys; whether double glazed; the thickness of air space; whether jalousie; the width of slats and their overlap when closed, if normally opened; the fraction of window opened; operable or nonoperable windows; and a description of the frame type and seal.

Exterior doors were examined only if a substantial number of rooms had exterior doors. These were checked for solid wood, hollow core of wood or steel, and for the type of seal which included the gap at bottom, weather stripping or other types of seal. A check was made if there was a storm door. Sliding glass doors were considered to be windows.

Ventilation systems were checked for windows only, central forced air, or through the wall air conditioning and the number per room and dimensions of the opening.

Room interiors were examined to provide the following information relevant to the interior acoustical characteristics: the percent of floor carpeted, the percent of wall covered with heavy drapes, whether or not there was acoustical tile on the ceiling and how many doors lead to interior rooms and hallways.

Summaries of building investigation results by name of building, location, distance, construction type and material, size and other relevant data are shown in Appendix D.

The building investigation was conducted in this manner: The building authorities were contacted and permission was obtained to inspect the buildings; take sound measurements, where required; take photographs and procure any available pertinent construction drawings. In most cases the area FAA office made these introductory arrangements: School and hospital administrators generally referred the investigators to the facility departments to obtain detailed plans. A worksheet, as shown in Appendix C, was prepared to record relevant architectural and acoustical data and is described as follows:

The average daily occupancy of the buildings was noted. Staff and students and/or patients for schools and hospitals as well as day and nighttime occupancy were recorded.

Building size was recorded by noting the number of stories as well as length and width. Where the particular complex was composed of more than one building or the building was of a complex shape, the longest distance between the extreme ends of the building was noted as the length, and the shortest distance between the extreme ends of the building was noted as the width.

Building size was also described by available site or key plans which facility departments were usually able to supply. The key plans also denoted the usage of various rooms, and the site plans gave the orientation with regard to north and the different elements of the building complex.

Room size was obtained by procuring prints of plans; photocopying pertinent portions of architectural plans; making sketches from non-reproducible plans; or physically observing, measuring, and sketching room plans in the absence of the above alternatives. The room use and occupancy were recorded with the number of rooms in the complex.

Construction materials and details were determined through a careful study of detailed architectural sections, elevations, detailed plans and schedules and were corroborated by physical on-site inspection sketching and photographing.

Wall construction was described by a separate listing of outside and inside materials and thicknesses. Twelve alternative outside walls and thicknesses were listed. A check entry "other" was provided for the outside wall type other than those listed.

Interior finish material of exterior walls was listed by fifteen types and thicknesses with an "other" listing for entry of material not covered by the list.

For other arrangements in exterior walls, five alternative entries were listed to be checked.

Insulation in stud space was listed with an entry for type and thickness.

Special features included entries to be checked for resilient mounting of panels, fiberboard under panels, on one side or both sides, double layer panels, continuously or laminated.

REFERENCES - CHAPTER 4

- 4-1. Sharp, B. H., Plotkin, K. J., Davy, B. A., and Sutherland, L. C., "A Study of the Effect of Environmental Variables on the Measurement of Noise from Motor Vehicles", Wyle Research Report ECR 74-18.
- 4-2. McKaig, M. B., "Use of Flush-Mounted Microphones to Acquire Free-Field Data," AIAA Paper 74-92, January 1974.
- 4-3. Beranek, L. L., Noise and Vibration Control, McGraw-Hill, 1971.
- 4-4. Berenek, L. L., Music, Acoustics & Architecture, John Wiley & Sons, 1962.

CHAPTER 5

SOUNDPROOFING APPLICATION AND BENEFITS

5.1 Soundproofing Application

5.1.1 Soundproofing Principles

Soundproofing a building consists of eliminating or reducing the transmission of sound into it. The first step is to eliminate leaks which offer no resistance to sound, such as open windows, vents, cracks, etc. Beyond this point, the specific construction of a building is important. Sound is not transmitted directly from outside to inside, but interacts with the building structure to cause interior noise.

When sound strikes the exterior surface of a wall, it causes the wall to vibrate. The vibration of the exterior wall is transmitted through the structure, causing the interior wall to vibrate; this vibration in turn radiates noise into the interior. Noise reduction measures may therefore be considered in terms of reducing the vibration of the wall.

For a single-panel wall, where inside and outside surfaces move as a unit, noise reduction measures consist of reducing the vibrational amplitude response. All else being equal, adding mass to a wall makes it more difficult to move, so that the most common measure for single panels is to add mass. A limp wall, with mass but no stiffness, is desirable because natural resonances can cause high response amplitudes. Increasing the stiffness of a wall very often changes its vibration characteristics in such a way that noise transmission is increased. The practical implication of this is that when mass is added, it must be done in a way to minimize any stiffness increase. Bonding two plies of material together with isolated spots of glue, for example, is preferable to continuous bonding.

The transmission loss (TL) of a single panel is limited to that given by the mass law for limp panels. In practice it is usually less, due to stiffness effects. Large transmission loss for a single panel can be achieved with a thick brick or concrete wall. Comparable transmission loss can be obtained with a much lighter structure, however, by utilizing double-panel wall construction.

Two separate panels, separated by a large air space and vibrationally isolated from each other, will have a TL equal to the sum of the TL of the two panels. This is because the noise incident on the second is that transmitted by the first. In practice, for walls of reasonable thickness, this ideal performance is considerably degraded by the following factors:

- Strong acoustic coupling of the panels due to the air space being small compared to a wavelength.
- Build-up of a reverberant sound field in the air space.
- Direct vibrational "bridging" due to connecting structure (studwork, floor and ceiling connections).

These factors can be reduced by increasing the air space (limited for walls, but quite practical for roofs), introducing absorptive material, and avoiding direct bridging by using staggered studs, resilient mounting, etc.

Where extreme noise reduction is needed — such as in recording studios or acoustic laboratories — elaborate measures such as double walls, vibrationally isolated floors and walls, floating rooms, etc., are used. Within the context of the present program, which must be limited to reasonable methods applicable to public building construction, soundproofing techniques may be considered to consist of eliminating leaks and then applying those methods noted above for single- and double-panel wall construction. This includes both replacing components (such as replacing single glazing with double) and modifying walls according to these principles.

5.1.2 Rehabilitation of Existing Buildings

Soundproofing an existing building consists of identifying which component elements provide transmission paths into the building, then incorporating appropriate modifications. Up to a certain point, modifications can readily be identified from comparative transmission loss, and consist simply of substituting one component for another. For example, if an unsealed hollow-core door is the only transmission path, a 10 dB improvement can be obtained by replacing it with a weatherstripped solid-core door.

Slightly more sophisticated modifications include adding insulation and/or layers of paneling to existing walls. Some very effective soundproofing techniques, such as staggered studs or fiberboard under paneling, are not suitable for retrofit because they would involve virtual demolition of the existing structure and construction of a new wall.

An important concept to keep in mind is that soundproofing is very much a leaksealing process. The largest "sound leaks" are attended to first, within the context of the particular building. The logarithmic decibel scale tends to obscure the physical consequences of this. A 10 dB improvement in noise reduction means transmitted sound is reduced by a factor of ten. For example, improving a building with NR = 30 involves identifying and eliminating transmission paths one-tenth the size of transmission paths present in another building with NR = 20. It is also important to realize that the noise reduction after modification is often not governed by the modification, but by what is left unmodified.

Following the principles noted above, the noise reduction analysis of the 60 study buildings was extended to include feasible soundproofing modifications. Required modifications for each building were identified from the calculations summarized in Appendix E.

The following modifications were applied as needed:

• Replace existing windows with sealed double glazing with EWR = 40. This can be accomplished with acoustic window designs with STC \geq 40. An alternative is to install a second layer of glass with at least a 2" air space, and absorptive material around the building. Both layers of glass must be at least 3/16" thick and well sealed.

- Upgrading doors and seals. In some cases "acoustic seals", specifically designed for noise insulation, were required. Examples are neoprene seals which are tightly compressed by the door and mechanical drop seals at the bottom. Seals must be installed all around the door. These seals provide an airtight closure much better than ordinary weatherstripping.
- Acoustic baffling of vents. These are custom-designed baffles which provide an absorptive sound trap without restricting air flow. These may be required for ventilated attic spaces and through-the-wall unit ventilators.
- Adding insulation to walls and attic spaces.
- Adding another layer of material, in effect creating a two-panel wall where the original wall is considered to be the first panel. The new gypsumboard or plaster is mounted on studs, furring strips, or a layer of fiberboard. Using fiberboard was found in Reference 5-1 to improve the TL of a frame or block wall by at least 10 dB, and requires less space than studs or furring strips.
- Eliminating windows and filling the space to match the exterior walls.

The last item is not intended as a recommended modification, but rather as a means of achieving noise reduction commensurate with the potential capability of the wall. In practice, very nearly the same noise reduction could be obtained retaining some window area by using smaller windows of special acoustic design.

Appendix H contains rehabilitation worksheets for each of the rooms considered in the study buildings. The worksheets show the existing noise reduction, and the improved noise reduction after applying various combinations of these modifications. The descriptions given on these worksheets form the basis on which costing infomation presented in Chapter 6 was developed.

The worksheets in Appendix H do not in themselves provide a useful description of typical retrofit on a regional basis. They were developed in the usual manner of treating each building on an individual basis. Comparing improvements denoted as Stage I, for example, would in general be meaningless. As noted in Section 5.1.2, improved noise reduction is governed by what has been left undone.

There are, however, two clearly definable categories of noise reduction which can be meaningfully correlated on a regional basis. These are:

- Category A: Replace existing windows with sealed double glazing, plus all other modifications necessary to achieve NR performance commensurate with the potential of double glazing. (Increased noise reduction on the order of 10 dB)
- Category B: Maximum feasible noise reduction, including elimination of windows. (Increased noise reduction on the order of 20 dB)

Appendix I contains tabulated summaries of noise reduction improvements according to these categories. Shown are existing noise reduction, improvement to noise reduction, and identification of which stage in Appendix H each corresponds to. The buildings are grouped by region, with schools and hospitals kept separately. Average noise reduction improvement and rms variation about the mean are shown for each grouping.

The two rehabilitation categories identified in Appendix I, together with their cost, form the basis of regional and national soundproofing cost figures developed in Chapter 6.

5.1.3 Soundproofing New Construction

All of the buildings visited in this study are existing structures, so that the only soundproofing option is retrofitting. In most cases the buildings predate jet operations, so that at the time of construction no consideration was given to soundproofing. For planning of future construction, however, it is worth considering the cost of including soundproofing initially vs. modifying later. Such cases, may arise, for example, if existing aircraft noise is not intrusive but it is projected that future noise will be.

Building soundproofing measures usually fall into two categories: replacement or modification of components, and basic construction. When components are replaced or modified, the cost difference between new and retrofit is limited to the cost of discarded components and demolition costs. Typical components considered are:

- Windows use double-glazed acoustical designs instead of single-glazing.
- Doors use solid-core with proper seals instead of hollow-core.
- Vents use designs with acoustic baffling.

Although the cost differential associated with these components is relatively easy to define, demolition costs can be highly variable. This is especially true when a new component — such as a baffled vent or a thicker window — is larger than the original component, and does not fit into the space available.

Basic construction consists of the material and configuration of the walls and roof. Some retrofit measures, such as adding insulation, are almost of the same nature as component replacement. Other retrofit measures consist of things which would usually not be done in new construction. For example, when retrofitting an existing wall, material is usually added to the surface, while a new wall is amenable to interior design features such as staggered studs or resilient mounting of panels. Very often in new construction, one arrangement of the same materials at nearly the same cost can give better noise insulation than another arrangement, while retrofitting the poorer arrangement can be costly. For example, if a double-pane window is constructed on-site, placing the panes several inches apart with absorptive material around the periphery is much better than placing the panes $\frac{1}{2}$ " apart which is often adequate for thermal insulation. It is not possible to provide a comprehensive discussion of new sound-insulated construction because of the tremendous variety of approaches possible. As the degree of noise reduction increases, design also becomes more complex. Noise reduction in excess of 50 dB can require either double-wall construction or quite sophisticated single-wall design. However, noise reduction of up to 40-45 dB for typical classrooms is possible with single-wall construction not very different from many conventional buildings. The following points must be considered in designing such a building:

Masonry Walls. A 9" brick wall provides sufficient attenuation to achieve 45 dB noise reduction in a classroom if all other transmission paths are eliminated. Poured concrete 6"-8" thick has similar performance. Hollow concrete block 8" thick has about 10 dB less noise reduction, however, due to its porosity and lighter weight. Adding a layer of fiberboard and gypsumboard to the interior of a block wall brings its performance up to that of concrete or brick.

Masonry walls should preferably be brick or concrete. Block walls, if used, need additional material. Retrofitting an existing block wall would entail relocating electric outlets, moldings, etc., in addition to installing the material itself.

Frame Construction. An uninsulated frame wall with conventional 2 x 4 studs has a noise reduction 10 to 20 dB less than brick or poured concrete. The performance of such a wall can usually be improved by about 10 dB by filling with insulation and adding fiberboard and gypsumboard to the interior finish wall. Severe modifications — such as adding another layer of framing, insulation, and finish wall — are often needed for further improvement. In new construction, performance similar to brick can be obtained by using staggered studs, insulation, and fiberboard under the interior and exterior finish materials. The additional material would be comparable to retrofitting an existing wall and would perform better.

Roof. Because ceiling area is often three or four times exterior wall area for rooms in large buildings, this can be an important transmission path. The same general considerations given above for walls apply. One important difference for roofs, however, is that there is often significant empty space between roof and ceiling which can be used to advantage. For example, a roof with unvented attic space (at least one or two feet) can perform 10 dB better than a wall using the same materials on 2 x 4 studs. Absorptive material is also particularly effective because of this reverberation space. By ensuring that there is insulation in the attic space and that vents are properly baffled, transmission can be reduced to less than that of a brick wall.

Concrete slab roofs are also subject to the same considerations. Providing at least a few inches of space between the slab and the finish ceiling (which must be sealed) and including insulation will usually be necessary if noise reduction of 40–45 dB is desired.

Roof constructions to be avoided are single-joist type, where interior and exterior materials are attached to the same rafters. This has the same difficulty as frame construction walls. Exposed-rafter ceilings with any roof material other than thick concrete and with no interior finish ceilings are clearly not suitable for use in soundproof construction.

• Air Conditioning. Because all openings must be sealed, air conditioning (or mechanical ventilation where cooling is not needed) is needed in soundproof construction. Planning ductwork for central ventilation units is much simpler in new construction than when adapting to an existing building. This is a highly variable item for retrofit. It may be impractical to install central ventilation in an existing building, requiring the use of properly vented window units.

A final comment on soundproof construction must be made. The quality standard is much higher than usual. Mortar must be free of pinholes, all joints must be well sealed, special techniques are required for resilient mounting of panels, etc. Such items are more difficult to estimate cost for; but, in general, if there is a range of labor rates, the workmanship needed will usually entail a higher labor cost than average even for nominally conventional operations.

5.2 Soundproofing Benefits

As developed in Chapter 2 when the external noise environment of a building causes the interior noise levels to exceed threshold values, the occupants may experience interference in the performance of noise-sensitive activity. For schools, the most sensitive activity to noise interference is verbal communication. For hospitals and public health facilities, it is the sleep of convalescing patients. The direct benefit of soundproofing for these cases is then the reduction or elimination of interference with such activities. Although it is difficult to translate this direct benefit into dollars, it can be readily examined on a qualitative basis.

For the case of schools, the benefit of soundproofing in improving verbal communications in the classroom is reflected in an improvement of the quality of education and reduction in stress of teachers and students. Improvement in the quality of education comes about through increased communication between teachers and students as well as the educational value of maintaining interruption-free continuity during verbal lessons. Although this benefit could be quantified to some degree by comparing test scores of students exposed to quiet and noisy environments, the value of an improved quality of education is in effect a priceless commodity.

The reduction of stress in the classroom achieved by lower noise levels results from eliminating the need for raised voices and vocal repetition as attempts to maintain communication during noise interruption from outside the building. As with improved educational quality, the reduction of stress is an intangible benefit which affects not only the participants in the classroom but ultimately their families and society at large. For hospitals and public health facilities the soundproofing benefit of reduced sleep interference is directly realized by the interned patients in the form of a health and quality-of-life benefit. Additional benefit can also be achieved in the potential reduction of medical attendance effected by sleep-disturbed patients.

In addition to the direct benefits to building occupants as described above, the incorporation of building soundproofing has the potential benefit of reducing energy consumption. Savings in energy are derived from reduced building heating and air conditioning needs resulting from soundproofing techniques such as sealed double-pane windows which reduce the heat and air exchange between exterior and interior. This benefit may be partially offset by increased energy use if mechanical ventilation and/or additional electric lights are added to replace lost natural ventilation when windows and cracks are sealed.

CHAPTER 6

COSTS, FEASIBILITY, AND PRACTICABILITY OF SOUNDPROOFING

The first part of this chapter is devoted to costs, including a discussion of the objectives and procedures for developing costing data. The cost prediction methodology is explained. The development of the cost data base is explained. Regional differences are discussed and explained. A detailed costing example is provided which demonstrates the costing procedure in its entirety. The program costs are provided, and the anticipated cost benefits are provided.

The second part of the chapter covers the feasibility and practicability of soundproofing. The limits and constraints of soundproofing are presented and factors relative to practicability are presented.

6.1 Costs

A major objective of the study was the determination of soundproofing costs of schools, hospitals, and public health facilities on a state, regional, and national basis. Costs were calculated for representative buildings, and then projected to determine the state-wide, regional, and national values. All values are in terms of total costs which include both labor and materials. All costs have been corrected for regional and state variations. These corrections are necessary because labor and material costs are different throughout the country. A final correction for the contractors markup, profit, and contingency is then applied.

6.1.1 Cost Prediction Methodology

The cost per "delta" NR's (in dB's) per square foot of floor space or per room average costs applying average square feet per room in each construction region offered the viable estimating method. These costs including cost coefficients (dollar per square foot) are derived from actual costings of sample buildings in each region.

By applying accepted contractor's pricing practice, the 1977 Dodge Manual has been used in deriving unit costs. It breaks each building item into the smallest unit with detailed and up-to-date accurate cost estimates. This manual is known for its completeness and the accuracy of its geographical adjustment indices.

The noise reductions achieved by A and B rehabilitation categories shown in Chapter 5 are found to be meaningfully correlated on a regional basis. The average costs for each region are derived as shown in Appendix M, and projected to the remaining buildings impacted within 30 NEF, within that region.

6.1.2. Cost Data Base

The cost data base includes the costs of all modifications, the regional cost adjustment factors, and the markup costs.

6-1

Three basic cost references were used to develop the cost figures:

- (1) The 1977 Dodge Construction Systems Costs, New York: McGraw Hill Information Systems Company, 1976.
- (2) The 1977 Dodge Manual for Building Construction Pricing and Scheduling, New York; McGraw Hill Information Systems Company, 1976.
- (3) Farley, J.H., Chief Editor, Hospital/Healthcare Building Costs, New York: McGraw Hill Information Systems Company, 1976.

These manuals are comprehensive reference tools for measuring the cost requirement of each modification and/or combination of modifications. The cost figures that are provided are based on national cost averages which are continually collected. These costs have been adjusted to represent early 1977 prices.

Base cost data are updated almost daily from information collected at actual job sites throughout the entire country. These data have been developed for application in terms of square feet. Thus, to calculate the cost of a modification, one needs to know the total square footage of the modification to windows, walls, etc.

For example, the current cost for providing a layer of gypsumboard and plywood on inside walls is:

ITEM	\$ PER	SQ UARE FOOT	
l" x 2" Furring	Labor .15	Material .10	Total .25
1/2" Gypsumboard	.17	.13	.30
Walnut Veneer	.78	1.62	2.40
Sand and Finish	.46	. 15	.61
Total per square foot	1.56	2.00	3.56

The reference sources show labor, material, and total costs per square foot of the modification; however, for simplification only the total figure is used.

Regional Cost Adjustment

Labor costs and material vary widely throughout the United States. Regional or locality adjustments are necessary in order to more accurately estimate actual costs.

The basic cost adjustment data is available from the 1977 Dadge Construction Systems Costs and the 1977 Dodge Manual for Building Construction Pricing and Scheduling. These references provide the most up-to-date and accurate regional cost adjustment factors. The basic cost adjustment data in both references is arranged by city. The 1977 Dodge Construction Systems Costs provides data on 84 cities in the United States and Canada. The 1977 Dodge Manual for Building Construction Pricing and Scheduling provides data for 152 cities in the United States and Canada. They overlap; and when the Canadian cities are deleted, they provide data on 148 United States cities. The publisher, McGraw Hill Information Systems Company, maintains that the cost adjustment data are accurate for each city and for the region around each city.

There are different procedures to group and utilize the basic locality correction data:

a. by cities

b. by states

c. by construction region

By Cities

These data are provided on a city by city basis. Where interest is centered on a specific local site for potential program implementation these data are recommended for use. However, within the scope of this study other procedures were considered more appropriate to the study's objectives.

By States

The basic cost adjustment data grouped by state provides average cost adjustment factors on a state-wide level. Use of such factors offers an overview of state costs. Appendix K lists the corrected factors which could be used on a state-by-state basis.

By Construction Region

These basic cost correction data are grouped by geographical regions of differing construction practices. This procedure was used in developing soundproofing costs.

The cities listed in the above references were sorted into the six regions representing the Geographical Areas of Differing Construction Practices, and into Alaska, Hawaii, and Puerto Rico. The Cost Adjusting Factors for each city within each region were then totaled and averaged to produce regional factors.

Appendix K shows the resultant correction factors for labor costs and material costs for each region, Alaska, Hawaii, and Puerto Rico. These correction factors were applied to base cost data within a Region to adjust labor, material, and overall costs up or down.

These correction factors do not include correction for temporary labor and material shortages and surpluses, discounts, travel, inflation, and unusual costs, which cannot be predicted on a systematic basis; nor do these costs include the final adjustment for the contractor's markup.

6.1.3 Costing Application

This section provides a practical costing example including the methodology for determining basic costs, correcting for regional cost variations, and the development of dollars per delta NR. Costing methodology and application is the same for schools and hospitals, thus only schools are used in the examples.

The example consists of two high schools in two different locations. The schools are typical of school buildings in terms of size, being neither excessively large or small; and in terms of architecture, that is, in containing no unusual or exotic designs and materials. The example utilizes Category B NR's (estimated 20 dB modification).

The first school (School A) is located in construction region E. The second school (School B) is located in construction region A.

School A structure has 42,336 square feet of floor space with 22.5 square foot windows, ten windows per room, 42 rooms, no air conditioning, 12 inch brick walls, and 1/2 inch painted gypsumboard interior walls.

<u>School B</u> structure has 43,500 square feet of floor space with 24 square foot windows, three windows per room, 58 rooms, no air conditioning, 8" concrete walls, and painted masonry interior walls.

The category B (20 dB) modification is to eliminate the windows and to fill the space with comparable exterior and interior wall materials and finishes; and, since the windows will be sealed, a Heating, Ventilating and Air Conditioning system (HVAC) must be provided.

The first step in determing the cost of the modification is the calculation of the total square footage of the modification. This is because the basic cost source provides costs in terms of square feet of modification. School A has 22.5 square foot windows, ten per room, and 42 rooms, so the total square footage of the modification is:

22.5 square feet x 10 windows per room x 42 rooms = 9450 square feet.

School B has 24 square foot windows, three per room, and 58 rooms. The square footage of the modification to school B is:

 $24 \times 3 \times 58 = 4176$ square feet

¹1977 Dodge Construction Systems Cost, New York, McGraw-Hill, 1976.

The first action to be taken is the removal of the windows. This is called demolition and the cost is .12 per square foot of the modification.² The cost for removing the windows in School A is:

9450 square feet x \$.12 = \$1134.00,

while the demolition cost for School B is:

$$4176 \times 5.12 = 501, 12$$

The next step in the modification is the filling of the window space with material like the existing external wall. These costs are also calculated in terms of the number of square feet of modification, but they vary according to the material used. School A is constructed of 12 inch brick interior walls, and this cost is \$9.09 per square foot³. School B is constructed of 8" concrete walls, and the cost is \$5.88⁴ per square foot.

All the window space in <u>School A</u>, 9450 square feet, will be filled with 12 inch brick at a cost of:

$$9450 \times $9.09 = $85,910$$

The window space in School B will be filled with 8" concrete, at a cost of:

$$4176 \times $5.88 = $24,554.88$$

The next cost item involves the interior wall modification. This cost is also calculated in terms of the square footage of the modification. School A has 1/2 inch painted gypsumboard interior walls, and this material will be applied to the brick. The cost of 1/2 inch gypsumboard painted is \$.91° per square foot, so the cost of this action is:

$$9450 \times \$.91 = \$8599.50$$

School <u>B</u> requires painting of the installed concrete. This cost is \$.42 per square foot⁶ so the cost of this action is:

 $4176 \times .42 = 1753.92

fibid.
Albid.
Sleid.
6
bid.

6-5

Neither building A nor building B is equipped with a HVAC system, therefore both buildings will require HVAC. The cost of HVAC is computed by the square footage of floor space. The square footage of the floor space in building A is 42,336, and the square footage of floor space in building B is 43,500. The cost of HVAC in high schools is \$4.40⁷ per square foot of floor space. The HVAC cost for School A is:

$$42,336 \times $4.40 = $186,278.40,$$

while the cost for School B is:

 $43,500 \times $4.40 = $191,400.00$

The total cost is the sum of all the modifications that must be made to a building. In this example, the total cost is the sum of the demolition cost, exterior wall cost, interior wall cost, and the cast of HVAC. The total cost of the modification to School A is;

1134.00 + 85,900.00 + 8599.50 + 186,278.40 = 281,911.90

while the cost for School B is:

\$501.12 + 24,544.88 + 1753.92 + 191,400.00 = \$218,209.92

Because the cost of construction varies throughout the nation, their total costs must be adjusted for regional variations, the cost correction factor for building in construction region E (School A) is .85, and the correction factor for region A (School B) is 1.10.

The actual cost of School A is:

 $281,911.90 \times .85 = 239,625.12$

while the cost for School B is:

 $218,209.92 \times 1.10 = 240,030.91$

in both schools, the applied modification yields an interior noise reduction of approximately 20 dB (Category B).

7_{lbid}.

The costs for improving the attenuation of schools A and B can be expressed in different units based on the total dollars. In addition to total dollars, costing can be expressed in dollars per square foot of classroom or dollars per classroom. Using the example, these units would be:

School A

(1) Dollars per square foot = $$239,625.12 \div 42,336 = $5.67/sq.ft.(Classroom)$

(2) Dollars per classroom = \$239,625.12 ÷ 42(Rooms) = \$5,720.00/Classroom

School B

- (1) Dollars per square foot = \$240,030.91 ÷ 43,500 = \$5.52/sq.ft.(Classroom)
- (2) Dollars per classroom = \$240,030.91 ÷ 58(Rooms) = \$4,140/Classroom

6.1.4 Program Costs

The estimated dollar costs of reducing the interior noise levels of schools, hospitals, and public health facilities to within feasible and practical limits, for existing buildings, are identified as Program Costs. These costs were determined through the application of building attenuation practices defined in Chapter 5 as Category A and Category B modifications.

Applying the methodology and procedures used in the example shown under subsection 6.1.3 and the regional factors shown in Appendix K; state, regional, and national soundproofing costs were derived as shown by Tables 6-1 through 6-7.

o Cost Derivation

Costing values were developed separately for each region, through the following process (National cost values are the simple summation of all regional costs).

- Individual cost calculations were completed for each sample site for each category of modifications (A&B) see Appendix Q.
- Individual costs were then added giving a total dollar cost for all sample sites for each category.
- The total dollars for each category were divided by total number of rooms to be rehabilitated at all sample sites, producing an average cost per category per room within that region.

SUMMARY OF ALL CONSTRUCTION REGION COSTS (NO MARKUP INCLUDED)

			SCHO	OL	_		HOSPITAL**					
Interior Levels	EXISTING		REHABIL	HABILITATION		AFTER		EXISTING		REHABILITATION		
(dB)	Number	No. of Student	\$ Cat. A	\$ Cat.B	Number	No. of Student	. Number	No. of Patient	\$ Cat. A	\$ Cat. B	Number	No. of Patient
<u> </u>												_4441
40-44	20	17 189			325	232569					44	324
45-49	37	26734			42	285 198	2	754	298650		17	65 89
50-54	90	69 50	11047170		203	123244	10	3046	463 1640		12	5289
55-59	150	109440	17787220		76	47420	18	6522		8799600	2	820
60-64	215	146230		26969255	32	18939	25	7360		11395430	3	426
65-69	234	149024		27488155			17	6589		10659200		
70-74	203	123244		22833820			12	5289		7588256		
75-79	76	47420		8585990			2	820		1218070		
80-85	32	18939		3530205			3	426		62 390		
TOTAL	1057	707370	28834390	89407425	1057	707370	89	30806	4930290	40281940	89	30806

*Limited by feasibility and practicability **Include public health facilities

and the second second

SUMMARY

SCHOOL

HOSPITAL

[3] S. M. Marken, C. S. Sharov, and S. S. Sharov, S. S. Sharov, S. Sharov, S. S. Sharov

Category A (|| NR +2) Cost Coefficient \$4.90/Sq.Ft. Category B (20 NR+3) Cost Coefficient \$5.49/Sq.Ft. (|| NR + |) _____\$12.80/Sq.Ft. (18 NR + 2) \$11.61/Sq.Ft.

Interior Levels			SCHO	OL			HOSPITAL**					
	EXIST	ING	REHABILITATION		AFTER		EXISTING		REHABILITATION		AFTER	
(dB)	Number	No. of Student	\$ Cat. A	\$ Cat. B	Number	No. of Student	Number	No. of Patient	\$ Cat. A	5 Cat.B	Number	No. of Patient
<40											1	92
40-44	2	2365	L		39	24795					5	1 159
45-49	3	1010	Í		43	29536	1	92	226000		3	1254
50-54	9	6172	108090		44	32381	1	370	727020		2	978
5559	14	9451	171 1680		11	6339	2	200		405600		
60-64	28	16258		3385200	6	4328	2	589		1 196520		
65-69	26	19075		3967600			3	1254		2541640		
70-74	44	32381		6739200			2	978		994200		
75-79	11	6339		1320800			0					
80-85	6	4328		904800			0					
TOTAL	143	97379	2819770	16317600	143	97379	11	3483	953020	6137960	11	3483

SUMMARY OF CONSTRUCTION REGION COST A

*Limited by feasibility and practicability

**Include public health facilities

SUMMARY

and a stand with the second second strated as a standard second

HOSPITAL

- (|| NR +|) \$15.14/Sq.Ft. (17 NR +2)
 - \$15.62/Sq.Ft.

SUMMARY OF CONSTRUCTION REGION COST __B (NO MARKUP INCLUDED)

			SCHO	OL			HOSPITAL**						
Interior Levels (dB)	EXISTING		REHABILITATION		AFTER		EXISTING		REHABILITATION		AFTER		
	Number	No. of Student	\$ Cat. A	\$ Cat. B	Number	No. of Student	Number	No. of Patient	\$ Cat. A	\$ Cat.B	Number	No. of Patient	
< 40												662	
40-44					6	4924					-	-	
45-49]		7	4687	1	662	72650		1	60	
50-54	1	1864	187250		10	5104					2	1050	
55-59	1	1260	119840		2	2353		er ==					
60-64	5	3060		358,545	1	553							
65-69	6	3427		399355			1	60		28160			
70-74	10	5104		597580			2	1050		492730			
75-79	2	2353		276930									
80-85	1	553		67045									
TOTAL	26	17621	307090	1699455	26	17621	4	1 772	72650	520890	4	1772	

*Limited by feasibility and practicability **Include public health facilities

SUMMARY

SCHOOL

HOSPITAL

Category A (11 NR+2) Cost Coefficient \$3.03/5q.Ft. Category B (20 NR+1) Cost Coefficient \$3.54/Sq.Ft.

(11 NR +1) \$1.14 / Sq. Ft. (23 NR +1) \$ 4.89/Sq.Ft.

and the part of the second states of the

			SCHO	OL			HOSPITAL**					
Interior Levels (dB)	EXISTING		REHABILITATION		AFTER		EXISTING		REHABILITATION		AFTER	
	Number	No. of Student	\$ Cat. A	\$ Cat.B	Number	No. of Student	Number	No. of Patient	\$ Cat.A	\$ Cat. B	Number	No. of Patient
< 40											4	1721
40-44	_	-			36	27729					4	1035
45-49	5	3674			35	24645					1	774
50-54	11	9430	1315210		10	6649]	52	89490		1	477
55-59	10	7900	1080110		9	6825	4	1721		2969060		
60-64	25	18299		3452840	7	4170	3	983		1697170		
65-69	20	1307 1		2466990			1	774		1335030		}
70-7 4	10	6649		1278380			1	477		834330		
75-79	9	6825		1287740								
80-85	7	4170		787740								
TOTAL	97	70018	2395320	9273690	97	70018	10	4007	89490	6835590	10	4007

*Limited by feasibility and practicability

**Include public health facilities

 SUMMARY
 SCHOOL
 HOSPITAL

 Category A (13 NR+4)
 (11 NR+1)
 (11 NR+1)

 Cost Coefficient
 \$3,86/Sq.Ft.
 \$11,26/Sq.Ft.

 Category B (22 NR+5)
 (18 NR+1)
 (18 NR+1)

 Cost Coefficient
 \$5,35/Sq.Ft.
 \$11,23/Sq.Ft.

SUMMARY OF CONSTRUCTION REGION COST D (NO MARKUP INCLUDED)

· · · · • ...

			SCHO	OL			HOSPITAL**					
Interior Levels	EXIS	TING	REHABILITATION		AFTER		EXISTING		REHABILITATION		AFTER	
(dB)	Number	No. of Student	S Cat. A	\$ Cat. B	Number	No. of Student	Number	No. of Patient	\$ Cat.A	\$ Cat.B	Number	No. of Patient
< 40					·						5	1966
40-44	11	9480	_		43	18351					8	4505
45-49	. 18	15756			206	150886					8	2 170
50-54	46	39912	6364050		63	37724	5	1518	2691520		3	622
55-59	87	68743	10958750		24	14388	5	1966		3448570	1	626
60-64	86	68959		1298304	5	3664	13	2987		5246320	1	186
65-69	101	66387		12489120			8	2170		3809050		
70-74	63	37724		7103040			3	622		1097250		
75-79	24	14388		2728320			1	626		1037080		
80-85	5	3664		682040			1	186		324740		
TOTAL	441	325013	1732280) 3598556	0 441	325013	36	10075	2691520	14963010	36	10075

*Limited by feasibility and practicability **Include public health facilities

SUMMARY	SCHOOL	HOSPITAL			
Category A (10 NR +2)	(1)	NR+I)			
Cost Coefficient	4.797Sq.Ff. (19	\$13.30/Sq.Ft. NR +3)			
Cost Coefficient	5.65′Sq.ft.	\$13.18/Sq.Ft.			
I	A	B	LE	6-6	1
---	---	---	----	-----	---
---	---	---	----	-----	---

SUMMARY	OF	CONSTRUCTION REGION	COST	E
	(NC	MARKUP INCLUDED)		

Interior Levels (dB)	SCHOOL						HOSPITAL**					
	EXIST	ſING	REHABILITATION		AFTER		EXISTING		REHABILITATION		AFTER	
	Number	No. of Student	\$ Cat. A	\$ Cat. B	Number	No. of Student	Number	No. of Patient	Sat. A	\$ Cat. B	Number	No. of Patient
<40												
40-44	3	3112			48	29775					I	626
45-49	4	2875			48	29581					2	1277
50-54	8	4213	694530		37	21690					2	1252
55-59	11	6933	1156200		20	11825						
60-64	37	22450		3697070	4	2295	1	626		1144920	1	130
65-69	33	19773		3256550			2	1277		1865830		
70-74	37	21690		3573560			2	1252		2287400		
75-79	20	11825		1947340								
80-85	4	2295		382860			1	130		189990		
TOTAL	157	95166	1850730	12857380	157	95166	6	3285		5488140	6	3285

*Limited by feasibility and practicability **Include public health facilities

SUMMARY

The second second second second

SCHOOL

H OSPITAL

No Sample

6-13

TABLE	5-7
-------	-----

.

SUMMARY OF CONSTRUCTION REGION COST F (NO MARKUP INCLUDED)

			HOSPITAL**									
Interior Lovels (dB)	EXIS	TING	REHABILITATION		AFTER		EXISTING		REHABILITATION		AFTER	
	Number	No. of Student	Cat. A	Cat. B	Number	No. of Student	Number	No. of Patient	Cat. A	Cat. B	Number	No. of Patient
< 40			[
40-44	4	2232			53	26995					16	59 16
45-49	7	3419	l		82	45863					2	1054
50-54	15	7559	1378040		39	19696	3	1106	1123610		2	910
55-59	27	15153	2760640		10	5690	7	2635	·	1976370	1	194
60-64	34	17204		3092560	9	3929	6	2175		2110500	1	110
65-69	48	27291		4908540			2	1054		1079490		
70-74	39	19696		3542060			2	910		882340		
75-79	10	5690		1.024860			1	194		180990		
80-85	9	3929		705720			1	110		106660		
TOTAL	193	102173	4138680	13273740	193	102173	22	8184	1 1236 10	6336350	22	8184

*Limited by feasibility and practicability **Include public health facilities

and the second second

SUMMARY	SCHOOL	HOSPITAL
Category A (10 NR +2)		(12 NR)
Cost Coefficient	\$6,18/Sq.Ft.	\$12.84/ Sq. Ft.
Category B (18 NR+2) Cost Coefficient	\$6.11/Sq.Ft.	(15 NR +4.) \$13.13/Sq.Ft.

and the second second

.

1

 The regional dollar/category/room unit was then applied to all the rooms of all buildings to get a total regional cost. Units were developed for schools and hospitals.

The following shows National Total Costs.

	Number	Costs
Schools	1057	\$118,241,815
Hospitals and Public Health Facilities	89	45,212,230
Subtotal		\$ 163,454,045
25% Mark-up		40,863,5
TOTAL	1 146	\$204,317,556
		~ (\$204 300 000)

These figures are based on early 1977 prices, and do not include conditions such as union rules, weather, or other cost escalations. For example, in a locality where many building projects are underway, prices and contractor fees will be somewhat higher. In localities where few building projects are underway, prices are likely to be somewhat lower. These effects are very local and are not predictable.

The distribution of cost on a state-by-state basis is provided in Appendix N.

6.1.5 Cost Benefits

Although the soundproofing benefits are mentioned in qualitative terms in Chapter 5, the following summarizes some of the obvious indirect benefits with plausible cost effectiveness calculations:

(1) More Effective Communication - Soundproofing permits more effective face-to-face, teacher-to-class, doctor-to-nurse, telephone, radio, etc., communication.

(2) Less Aggravation - Aircraft noise in schoolrooms results in aggravated teachers. A decrease in the noise results in less aggravation; thus, making the teacher's job more pleasant and desirable. This is also related to turnovers since contented teachers are less likely to resign. This results in a decrease in personnel costs, school operating costs, and less tax to local citizens.

(3) Fewer Complaints/Litigations - Less noise means fewer angry people. This means less actions against airports, airlines, airport sponsors, and federal agencies.

(4) Greater Positive Feeling Towards Aviation – People who are greatly disturbed by aircraft noises are not likely to look favorably on aviation. They are not likely to support aviation, aviation research and grants, and improved aviation technology.

(5) Greater Positive Feeling Towards Airlines - People who are greatly disturbed by aircraft noises do not look favorably upon airline companies. Reducing the noise may reduce their disfavor. This may have some impact on their likelihood of using aviation as a means of travel. Since aviation is the safest way to go, this means an impact on public safety.

(6) Improved Land Utilization – Effective soundproofing means that land very near airports can be more effectively used. Certain kinds of buildings may be desirable there such as prisons, some hospitals, etc.

(7) Greater Airport Flexibility – Proper and effective soundproofing (retrofitting) may allow airports to be built closer to built up areas.

(8) Less Sleep Disturbance – A reduction of aircraft noise through soundproofing will result in less sleep disturbance both in terms of waking up and being able to fall asleep.

(9) Cleaner Air – Proper soundproofing requires the utilization of effective HVAC technology. This results in better air quality within buildings and can result in a more comfortable environment. Air-conditioned schools are more comfortable and conducive to learning than are non-airconditioned schools.

(10) Fewer Respiratory Problems – Soundproofed schools with good HVAC will be most pleasant to children and teachers who are troubled by a variety of allergies and other respiratory disorders. The same is true for hospitals.

(11) Less Distraction – Soundproofed (i.e., sealed buildings) permit less outside distraction. School children are less likely to be looking outside at some disturbance and more likely to pay attention to the teacher.

(12) Greater Energy Conservation – Soundproofing uses similar technology to insulation, thus, there is a major savings in terms of heat and cooling loss.

(13) <u>Improved Fire Safety</u> ~ Greater use of heavy wall construction slows down and lowers the danger from fire.

(14) <u>Improved Building Construction</u> - Effective soundproofing requires careful attention to detail during the construction and retrofitting of a building. This means a heavy supervisory and inspection function, however, short cuts and sloppy workman-ship will be avoided, thus resulting in a better built building.

(15) <u>Greater Desirability of Property</u> - An effectively soundproofed building within a high noise area is simply more desirable than an unsoundproofed building. This improves sale and resale value.

(16) <u>Increased Property Value</u> – Although many buildings around airports do not lose value because of noise, an effectively soundproofed building can command a high sales price or rental. Both of these factors may impact the finances of the local community.

Classroom Disturbance Cost Savings

The passage of an airplane over a highly impacted school results in a disruption of ongoing classroom activity. The teacher must momentarily stop teaching, and the students can do nothing constructive for the duration of the disturbance. As soon as the aircraft has passed, the classroom activity can resume.

Although each disturbance is only momentary, it is a disturbance; and because productive activity stops, it is wasted time.

In an effort to quantify the cost of waste time, certain assumptions and concepts must be considered.

I. The operation of a school is a continual cost. Teachers are paid throughout the day for productive time and for waste time.

2. Original building costs and operating costs can be amortized over time and distributed on a per-student basis.

3. Waste time can be viewed as an unnecessary cost to the taxpayer even though the removal of the disturbance does not affect the actual salaries of teachers or per-student costs.

4. The cost of soundproofing is a dollar value, and the cost of waste time is a dollar value. If the cost of soundproofing is greater than the cost of the waste time, soundproofing is not cost effective because there is no return. If the cost of soundproofing is less than the dollar value of the waste time, soundproofing is cost effective because there is a return in productive time. There is, in effect, a net gain in productive time, and thus, a gain in value.

6-17

Classroom Disturbance Cost can be quantified as follows:

$$Cost = t \times \overline{S_h} \times \overline{N_t} \times L$$

$$\overline{60}$$

where;

t = total teaching time lost in minutes

 $\overline{S_{h}}$ = average teacher's salary in dollars

 $\overline{N_{+}}$ = average number of teachers employed

L = life cycle, in days, = 180 days x 10 years

Revised Formula

Benefit in dollars =
$$[t \times \overline{S_h} \times \overline{N_t} \times L] - [C_{sp}]$$

where $C_{sp} = Cost$ of soundproofing

Classroom Disturbance Teacher Cost - Example

Assume:

t = 10 minutes (total disturbance per day)

 $\overline{S_{h}}$ = \$10.66 per hour (based on the national average)⁸

 $N_{t} = 100$ teachers

then

$$Cost = \left(\frac{10.66}{60}\right) \quad (100) \quad (1800) \quad (10)$$

Value of the lost time = \$320,000.

If the cost of the modification is less than \$320,000, there is a net gain.

• If the cost of the modification is greater than \$320,000, the soundproafing has cost more than the value of the teaching time that was saved.

⁸U. S. Bureau of the Census, Statistical Abstract of the United States, Washington, D. C., Department of Commerce, 1975, p. 130. This analysis is based on the distraction time occuring in 1,057 schools. Distraction time is considered to be a minimal 20 seconds per interruption due to an aircraft flyover. The distraction time per school was calculated on the basis of the number of flights made during the school day. Thus, a school, impacted by flights from Portland International Airport, would have approximately 30 flyovers per school day. Thirty flyovers at 20 seconds each is a total daily disruption time of 600 seconds, or .16 hour.

Since there is only one school, the total lost time is $1 \times .16$ hour, which is .16. Multiplying this by the number of teachers (30) gives the total manhours of teachers' time lost. The total hours lost per day in this school is 4.8 hours. The average teacher's salary is \$10.66 per classroom hour, so the value of the lost time is \$10.66 \times 4.8 hours, which is \$51.17 per day. This is the value of the lost teaching time every day due to aircraft noise.

51.17 translates to a yearly cost of 51.17×180 days which is 9,210.60. This is the cost of the lost teacher time every year in this particular school.

Costs and benefits are not generally calculated on the basis of one year of operation. Similarly, a multiple of 10 years (without escalation) as the average time has been used. This figure was used as a general guideline in that this is a reasonable time frame for a modification to a structure. $9,210.60 \times 10$ years equals a benefit of 92,106.00.

If the cost of soundproofing is less than \$92,106.00, the cost of soundproofing will be offset by the recovery of productive teachers' time in less than ten years. If the cost is greater than \$92,106.00, a break even point will not be reached until some time after 10 years.

In the case of this particular school, the actual projected cost of the modification is \$28,068.00 which is considerably less than \$92,106.00.

The following summarizes this benefit calculated for all 1,057 impacted schools nationwide. The total benefit is the value of the teachers' time saved.

Teachers' Time Lost Due to Aircraft Noise (Nationwide)

One Aircraft Operation for Nation's Impacted Teacher: (707, 370 - 43, 923) = 26538

25

$$10.66 \times \frac{1}{180}$$
 (hour) x 26,538 = \$1,572

Average Daily Jet Operation at Jet Operated Airports (School Periods) - 10

Average Value Per Day - \$15,720

Construction Costs to Remedy Schools \$118,200,000 (Without Markups) Student Time cost can be quantified as follows:

In a similar order of magnitude calculation, one can derive a student cost of predominantly public elementary and secondary education as \$1,369.63 (1974/1975) as given in the Digest of Education Statistics in 1976.

Average Annual Education Cost Per Student	\$1,369.63 974/1975
Estimated Annual Cost Per Student	1,570.00 1976/1977
Average Class Hour Cost Per Student (Average 7 Class Hours – 180 Days)	1.45 1976/1977

o Student's Time Lost Due to Aircraft Noise

One Aircraft Operation for Nation's Impacted Students (707,370 - 43,923) = 663,447

53,440

\$1.45 x $\frac{1}{180}$ (hour) x 663,449 = \$5,344

Average Daily Jet Operation Estimates (School Period) 10 at Jet Operated Airports

|--|

Construction Costs to Remedy Schools 118,200,000 (Without Markups)

o Hospital Disturbance Cost

Since an average cost for an inpatient is given as \$118.54 per day in the Hospital Statistics in 1975, one can estimate the similar order of magnitude following a recent thesis' in which patient stay was found to be correlated with noise.

\$135 (1977 Cost) x 30,806 (impacted patients) = \$4,158,810 per one day delay in discharge rate.

In this connection, the other study entitled: "Noise in Hospitals Located Near Freeways" is noteworthy in that the recurring highway noises did not disturb patients or staff until the noise level reached 72 PNdb.¹⁰ Regardless of traffic noise

⁹Daniel Fife and E. Rappaport, "Noise and Hospital Stay," Public Health Brief, American Journal of Public Health, July 1976, Vol. 66, No. 7.

¹⁰R. M. Towne and et al., Noise in Hospitals Located Near Freeways, Towne and Associates, Inc., Seattle, Washington, January 1964. content, the total noise environment had little bearing on the recovery rate of patients, and virtually no bearing on a doctor's decision as to where he will hospitalize his patients. Thus, although there is still a question as to the impact of aircraft noise on hospital stay, such a benefit is quantifyable.

Energy Conservation Benefit and Quantification

The soundproofing of buildings has two direct effects – (a) increased energy consumption by air conditioning equipment due to the elimination of natural ventilation and (b) reduction in heat loss due to the sealing of walls, windows, and other openings. A related study¹¹ found that energy savings realized by reduction of heat loss outstrip the increased energy consumption of air conditioning.

Another side effect is reduced humidity during winter months causing some discomfort with no appreciable health hazards. Also, the increased indoor air pollution such as increased exposure to cigarette smoke particles and odors may require separate areas for smokers and non-smokers.

The energy consumption can be calculated as follows: ¹²

- Net Energy Saving = (Energy Savings by Sealing and Modification) -(Added Ventilation Energy)
- Energy Saving by Sealing " (Infiltration Constant) (C)) x (Building Volume) x 365 x 24
- Energy Saving by Modification = (Thermal Transmittance (U) Factor) x (Area) x (Local Annual Degree/Day x 24)
- Added Ventilation Energy (kwh/year) = Building Volume 233
- Weighted average energy cost for gas, oil, and electricity is applied to the above energy consumption to translate into dollar costs.

Table 6-8 shows the results of net energy saving calculations attributed by the soundproofing programs.

the state of the

Federal Energy Administration, "Energy Conservation in New Building Design," Conservation Paper No. 43 B, August, 1975.

² Wyle Laboratories, "Insulation of Buildings Against Highway Noise," August, 1976.

TABLE 6-8

Construction Region	Impacted Airport N	4 10.	School Net Savings	No.	Hospital Net Savings	No.	Public Health Facili Net Savings	ty No.	TOTAL
A	39		\$ 226,957	143	\$ 21,226	11		-	\$ 248,182
В	13		19,692	26	1,903	3	\$ 533	I	22,110
с	78		17,472	97	2,966	8	95	2	20,534
D	171		2,431,702	44	53,111	33	14,402	3	2,499,215
E	148		267,867	157	8,712	· 5	727	t	277,307
F	259		649,777	193	139,080	17	11,514	5	800,371
NATIONAL TOTAL PER YEAR 10-YEAR CYCL COSTS (withou escalation)	708 E It		<u>\$ 3,613,467</u> \$ 36,134,676	1,057	\$ <u>226,998</u> \$2,269,982	77	\$ 27,261 \$ 272,610	12	<u>\$ 3,867,727</u> \$38,677,268
NOTE: Ye Region De A B C D E F	arly- gDays 1799 1765 214 5634 2983 5283	Temp Diff 25 50 75 Heatin	C(Infiltratic <u>Constant</u>) .57 I.13 I.6 g Value Efficien	on <u>UF</u> Sing Dou Icy: Coal Oil - Gas	actor le Pane Glass - I. ble Pane Window - 7800 BTU/Ib. 98000 BTU/gal. - 820 BTU/c.f.	13 .58	1977 Weighted A Region Gas Northeast I.6 North Central I.0 South .8 West .9 *Federal Ene January, 19	ve. Ener (\$/mcf) 3 9 4 ergy Adm 277.	rgy Cost El. OII(\$.gal) (c/kwh) .446 5.38 .415 3.05 .426 2.95 .446* 2.56 ninistration,

and the design of the

SUMMARY OF NET ENERGY SAVING DUE TO BUILDING INSULATION

6-22

6.2 Feasibility and Practicability

6.2.1 Feasibility

Feasibility for the purposes of this study is defined as the potential for modification. A modification may be feasible if:

- the actual work to be performed is within the state-of-the-art of building work. Modifying windows, applying layers of gypsumboard, etc., are within the state-of-the-art.
- 2. the cost of the modification is not excessive, in terms of reasonable and normal costs. If a particular piece of work requires unusual material or skill, and thus the costs are out of line, the modification is not considered feasible. Similarly, modification to a building with a life expectancy of less than ten years would require a careful trade off analysis from a cost standpoint.

6.2.2 Practicability

Technical limitation refers to the net result of engineering and architectural rehabilitation. In the context of this study, soundproofing rehabilitation was found to be practical in that the rehabilitation can be applied to most buildings. Scheduling is required, however, because some rooms cannot be utilized during the rehabilitation work. Since the rehabilitation can proceed room by room, a small number of classes or patients will be disturbed at any one time. Rehabilitation to external doors and the roof will not disturb the occupants.

6.3 Evaluation of Eligibility and Priority for Soundproofing Candidates

The findings of this study may be incorporated in a federal program to fund soundproofing of public buildings. This section of the report provides an evaluation of the elements of such a program related to determining the eligibility of requestors for such funds and a priority system by which applications could be considered. Since many of the underlying questions concerning eligibility and priority for soundproofing funds are based on similar considerations, the two topics are treated together. Discussed below are recommendations and key factors to be considered.

6.3.1 Eligibility and Priority

Applicable Use Category

The first step in determining the eligibility of a specific application for funds should be to verify that the actual or planned usage of the building falls within the usage categories intended by Congress for consideration. Building-use categories specifically covered by this study are schools, hospitals and public health facilities. Additionally, only rooms directly related to building use (such as classrooms in schools) are specified. Potential areas for clarification include further definition of eligible rooms, further definition of what constitutes a public health facility, the possibility of including other building-use categories and the inclusion of privately owned facilities falling within the above categories. Since the degree of noise impact will vary considerably for buildings within each category, it does not appear feasible to base a priority system for funding on a consideration of use category.

Magnitude of Noise Impact

From both an eligibility and priority standpoint it is important to focus on those buildings most severely impacted by aircraft noise. In regard to eligibility, it is necessary to define the minimum level of impact which qualifies a candidate for soundproofing funds. The manner in which this noise impact is defined can then be used to establish the priority by which qualified applications are considered. The determination of the degree of noise impact from aircraft operations encompasses consideration of the following factors:

- 1. The most direct indication of the magnitude of noise impact within a building is the amplitude of the aircraft noise levels. The noise levels above which interference with noise-sensitive activities occur are identified in Chapter 2. In addition to the maximum aircraft noise levels which occur, consideration must be given to the duration and number of occurrences of the aircraft noise intrusions. Two approaches to including duration and number are establishing noise criteria in terms of the percentages of time threshold noise levels are exceeded, and the use of an energy-cumulative metric such as NEF or L_{dn}.
- 2. Another important measure of the degree of impact is the number of people affected. For maximum benefit, buildings with a high level of occupancy may be given preference to buildings with low occupancy.
- 3. A final consideration in the assessment of noise impact is the building interior noise level in the absence of aircraft noise sources. In order to be considered a source of adverse impact, noise contributions from aircraft would be expected to significantly exceed the noise environment produced by other sources. Non-aircraft noise sources to be considered include internally generated noise such as ventilation equipment, normal conversation, feet shuffling, etc., as well as exterior sources such as highway traffic.

Effectiveness of Soundproofing

Establishing the feasibility of soundproofing to alleviate noise impact as opposed to relocation of facilities or modifications to aircraft operational procedures should be incorporated into the criteria for eligibility. Factors involved in establishing the feasibility include:

- It should be established that soundproofing would provide a beneficial reduction in level. The desired degree of soundproofing must be consistent with degrees identified in this study as being feasible. Furthermore, the costs associated with soundproofing should be balanced by the degree of benefit achieved.
- Since soundproofing has benefit only in reducing building interior noise levels, its feasibility needs to be considered in relation to the extent of noise-impacted outdoor activities.

6.3.2 Technical Evaluation

Once a program is initiated, applications for soundproofing funding will be expected. In part, these applications will be reviewed on the basis of criteria developed from the considerations given above. A substantial part of an application must contain technical documentation of the present noise environment. This will consist of essentially three factors:

- o Exterior noise environment, including aircraft and non-aircraft noise sources.
- o Present building noise reduction.
- o Proposed soundproofing modifications, including cost estimate.

The data to substantiate these factors should be developed by technically trained personnel and presented in a form consistent with FAA eligibility review procedures.

6.3.3 Priority of Programs

Modifications can be funded in four ways:

- 1. In the order of seriousness of impact
- 2. by geographical area
- 3. by random selection
- 4. all buildings at once

Modifications can be made according to a program based on the severity of impact. In other words, the most severely impacted buildings should be done first; less severely impacted buildings would be done at a later date. Essentially, buildings would be modified in the order of the level of aircraft noise impact, regardless of the geographical area. A second procedure would be to perform the modifications by geographical area, regardless of the level of the noise impact. This procedure has the advantage of more efficient program control. All work is being performed in a geographical region. All impacted schools are modified at the same time, thus, avoiding confusion as to why one school is being modified but another less seriously impacted school in the same area is not.

A third alternative procedure would be to modify buildings at random. This procedure has the sole advantage of avoiding any dispute about the order of modification. It is possible that many localities and school systems would desire to have their buildings modified first. This procedure avoids lengthy discussions with local officials.

A fourth alternative would be to implement all modifications at the same time. This procedure is probably the most desirable in that no one has to wait for their modification. Modifications are made in the shortest time frame, thus allowing the benefits of soundproofing to begin as soon as possible.

The following suggested criteria could govern the funding of the program.

(1) Meeting the eligibility criteria. Before any consideration of funding, a particular building must meet the criteria for eligibility.

(2) Alternate Sources of Funding. If there are other sources of funding available, coordination in program funding should be completed.

(3) Alternate Sources of Noise. If there are other than aircraft sources of noise impact, a proportional funding may be in order.

The criteria implementing the soundproofing program should be based on benefits which the program would achieve. Those anticipated benefits, direct or indirect, discussed, should be weighed against adverse effects and the costs of implementation as well as alternative consequences.

In soundproofing of public buildings near airports, there are substantial benefits-savings of time lost by teachers and students during aircraft noise intrusion and sizeable net energy savings as discussed. Probable local economic and environmental impacts coupled with resource allocation need to be assessed in each case.

REFERENCES - CHAPTER 6

1977 Dodge Construction Systems Costs, New York: McGraw - Hill, 1976.

U. S. Bureau of the Census, Statistical Abstract of the United States, Washington, D. C., Department of Commerce, 1975.

Fife, Daniel, and Rappaport, E. "Noise and Hospital Stay," Public Health Brief, American Journal of Public Health, July 1976, Vol. 66, No. 7.

Town, R. M., and et al, Noise in Hospitals Located Near Freeways, Towne and Associates, Inc., Seattle, Washington, January 1964.

Federal Energy Administration, "Energy Conservation in New Building Design," Conservation Paper No. 43 B, August, 1975.

Wyle Laboratories, "Insulation of Buildings Against Highway Noise," August, 1976.

CHAPTER 7

NATIONWIDE NOISE IMPACT

Aircraft noise affects people by disturbing their normal classroom activities, sleep, and health services. Thus, the nationwide aircraft noise impacts are:

- To identify the estimated number of schools, hospitals, and public health facilities which are located within the noise sensitive areas around airports and therefore subject to the effects of aircraft noise.
- (2) To identify the estimated number of occupants (students and patients) at those public buildings located within the noise sensitive areas near airports.

7.1 Criteria and Methodology

7.1.1 Impacted Area Around Airports

The noise exposure forecast (NEF) takes into account not only the annoyance due to the individual noise event, but the contribution from multiple noise events. Thus, NEF provides a meaningful criterian in terms of impact on people--the effects of noise on classroom speech communication and sleep. The NEF 30 delineates the cumulative noise exposure which is generally regarded as the exposure above which considerable annoyance occurs.

All available NEF noise contours were compiled from FAA Regional Offices, Wyle Laboratories, who participated in the 1974 DOT study of 23 major U. S. airports, and airport authorities/agencies who developed NEF contours. In the event of nonexistent or nonavailability of NEF contours, estimates of NEF contours were made by following the procedure developed by the U. S. Department of Housing and Urban Development (Noise Assessment Guidelines, Circular 13902). Then, schools, hospitals, and public health facilities within NEF 30 contours were identified from U. S. Geological Survey maps.

7.1.2 Analytical Process

The first step was to compile data by location of all public buildings located within 30 NEF around those airports which support jet operations. This data base included building types, construction materials, occupancy, classroom or patient room size and number, and other publicly available statistical information. These data were compiled for all large and medium hub airports across the country. Six large hub airports were analyzed by site visits, each representing six contiguous construction regions in the nation. For small airports, statistical sampling methods were used. Appendix Q shows a complete listing of all sample airports (large / medium hub, and smaller airports including general aviation) utilized for the data base.

Projection Methods for Small Airports

The sampling of small airports is concerned with random variables of public buildings whose means and distributions are not known precisely. The sampling distribution is inferred from observed data which are the results of field investigations conducted in the six construction regions. A random sample size of approximately 40 small airports was drawn in such a way as to insure that each group of small airports had the same chance of being included in the nationwide jet operated small airport population of approximately 639.

The nationwide jet operated small airports are assigned to alternative stratum classifications: initially by population density of the associated area of small airports. Since population density data were not feasible to assemble or to generate, the other two alternatives--population group of city associated with airport and average daily jet operational group of FAA National System of Airport Classification System (1972 National Airport System Plan)--were used.

The following shows a summary of findings:

Stratum Group	Population Group of Associated City	Small <u>Air ports</u>	Average Daily Aircraft Operation	Small Airports
A	Above 200,000	20	o Primary System (TP2)* Above 700	16
В	80,000-199,999	6	o Secondary System (SI) 700 ~280	126
С	40,000-79,999	60	o Secondary (S)	170
D/E	Below 39,999	553	o Feeder System (F)	327
		639	Below 139	639
Stratu	m	No. of S	tratum No. of Sample	Airports
•		N	۱۹ ۱۹	
•		•	•	
•		•		
<u>к</u>		· NL	nk	
4		14	<u>K</u>	
		N	'n	
n N	$=$ $\frac{n_2}{N_2}$ $=$	…n _k NK		

*FAA National Airport System Plan, 1972

7-2

The above shows that all small airports are subdivided into K stratum of size N_1, N_2, \ldots, N_K with $N_n = N$ and simple random sample of size n_1, n_2, \ldots, n_k with $n_n = n$.

Let u = true mean of national small airport and u_h be the true mean of the hth stratum, and let \overline{X}_h be the observed mean of the sample n_h drawn from the hth stratum:

Then the unbiased estimate of $u = \frac{1}{N} \sum_{h=1}^{K} N_h X_h$

Thus, the estimate of population mean is the weighted mean of the observed subsample mean, where weight applied to the subsample mean X_h is N_h/N_h .

The sample size drawn proportionally and stratified sample is expressed as:

$$\frac{N_{h}}{N} = \frac{n_{h}}{n} \div \hat{v} = \sum_{h=1}^{n_{h}} \frac{X_{h}}{n}$$

The estimates derived from both of the groups, population and average daily operation, were very similar. However, the correlations between the number of public buildings and each grouping type show that the average daily operation had stronger correlation: correlation coefficient of population $(r_2) = 0.71$ compared to correlation coefficient of average daily operation $(r_1) = 0.86$.

Consequently, the average daily operations of small airports are used to estimate the distribution of impacted public buildings within the construction region and each state proportionally by the sampling of small airports.

7.2 Nationwide Impact

Table 7-1 shows the total nationwide impact. 1,146 buildings are impacted by aircraft noise to an extent sufficient to disrupt the normal activities occurring in those buildings. There are 738,176 impacted occupants and the total cost for soundproofing is \$204,300,000. Tables 6-1 thru 6-7 in Chapter 6 provide the national impact on a regional base interior noise level.

TABLE 7-1

NATIONWIDE IMPACT

Item	Exist	ing	Estimated Costs of		
	Building	Occupants	(CAT, A and B)		
Schools	1057	707,370	\$ 147,800,000		
Hospitals and Public Health Facilities	89	30,806	5 6 ,5 00,000		
TOTALS	1146	738, 176	\$204,300,000		
Region					
А	154	100,862			
В	30	19,393			
c	107	74,025			
D	477	335,088			
E	163	98,451			
F	215	1 10,357	, ,		
	1,146	738, 176			

*Include 25% markup (overhead - 10%, profit - 10%, and contingency - 5%).

7-4

CHAPTER 8

CONSULTATION AND FINDINGS

8.1 Soundproofing Views Expressed

Information was obtained on the views, opinions, and ideas expressed relative to the concept of soundproofing schools, hospitals, and public health facilities as a means of alleviating the impact of aircraft noise. These views, ideas, and opinions were volunteered.

Information obtained from school officials and hospital personnel, was obtained during telephone conversations made to collect architectural data. Additional information was obtained from FAA sponsored meetings and official briefings.

8.1.1 Consideration of Soundproofing

The facilities director of a school in Georgia said that the schools were certainly not built with aircraft noise as a consideration.

A Florida school official stated that some schools in the area have been modified to cut down on aircraft noise. The method used to improve the noise problem in these schools was the installation of air conditioning in order to keep the windows closed. No indication was given as to the effectiveness of these modifications regarding speech interference.

8.1.2 Local Interest

An official of the facilities department of a Virginia school system felt that the soundproofing program was something good and would be beneficial to the students.

Officials of school systems in New York and Louisiana stated simply that they had no interest in the soundproofing program.

During the course of the study, certain localities were found to be most interested in soundproofing. The following is a portion of a letter from one such locality:

> "Boston has been designated as a city to be included as part of the study, and the purpose of this letter is to express our desire to cooperate with you and to move ahead expeditiously. This is a subject of great importance to us and we are anxious to obtain the conclusions as to the feasibility of soundproofing . . ."

School officials in Texas and Illinois were indifferent to the soundproofing program. These officials would accept a program of soundproofing but would probably not actively seek it. Appendix O contains a list of the source references of views expressed.

8.2 Findings

The following includes views, opinions, suggestions, and recommendations developed during the course of the study:

- (a) soundproofing is a feasible technique for the alleviation of the impact of aircraft noise from an engineering and technical point of view.
- (b) the noise prediction methodolgy was substantiated. This indicates that the technique of estimating the level of interior noise, and the corrective modifications to reach a pre-determined goal is a valid technique.
- (c) the nationwide impact in terms of both people and buildings was estimated.
- (d) soundproofing is seen as desirable and acceptable by some local authorities.
- (e) establishment of a data bank which could be used as a central repository of nationwide impacted public building by jet operated airports, location, type and size, noise contour, activities, occupants, contacts, architectural and engineering plans, and all related statistics concerning populations, schools, and hospitals.

GLOSSARY

Absorption -- The dissipation of noise energy by viscous interaction at surfaces.

Absorption Coefficient – The ratio of the sound energy absorbed by a surface to the sound energy incident upon the surface. The absorption coefficient for a given surface is a function of both angle of incidence and frequency.

Acoustical Material -- Any material considered in terms of its acoustical properties. Commonly and especially a material designed to absorb sound.

Acoustic Baffle -- A fitting in a ventilation duct which attenuates noise travelling along the duct while presenting little flow resistance.

Ambient noise --- The all-encompassing noise associated with a given environment, usually being a composite of sounds from many sources near and far.

Attenuation -- The reduction of the energy or intensity of sound. It may be due to geometrical spreading, absorption or transmission loss.

A-Weighted Scale -- A frequency weighting system that has characteristics which approximately match the response characteristics of the human ear. A-weighted levels are often referred to as dBA.

Exterior Wall Rating (EWR) --- A single number rating of the transmission loss of a construction element, representing the attenuation of A-weighted transportation noise. See Appendix B.

Frequency -- The time rate of repetition of a periodic quantity. It is usually expressed in Hertz.

Hearing Loss -- The amount by which a person's hearing is worse than normal, resulting from specific cause such as advancing age, noise exposure, or injury.

Hertz -- The unit of measurement of frequency. It is the number of repetitions per second.

Infiltration -- The leakage of air through wall panels due to incomplete sealing of joints, window frames, doors, etc.

Leq -- Equivalent Noise Level, a metric for describing a time period of fluctuating noise with a single number. Leq is an average level based on the average energy content of the noise. It is the constant noise level which would contain the same amount of acoustical energy as a fluctuating level for the given period. Leq is always based on the A-weighted noise level. The time period over which the averaging is conducted should be specified, such as (Lea)8 for an 8-hour period.

GLOSSARY (Cont'd)

Level -- A scale used to describe the amplitude of acoustical quantities — usually ten times the common logarithm of the ratio of an acoustical quantity divided by a reference quantity of the same kind.

Live Room -- A room which is characterized by an unusually small amount of sound absorption.

Metric -- A measure of noise. Some metrics are complex and may account for characteristics such as noise duration, noise level, frequency content, time of occurrence, or single events.

Noise -- Annoying or unwanted sound.

Noise Level -- The sound pressure level of noise, usually A-weighted.

NR -- Abbreviation for Noise Reduction, the difference between the noise levels outside and inside a structure. Within the present study, NR is taken as the exterior A-weighted level minus the interior A-weighted level.

Octave Band -- A frequency interval whose upper and lower limits differ by a factor of two.

Sound Power Level -- Total acoustic power expressed on the decibel scale. Abbreviated PWL, this is defined as $10 \log_{10} I/I_{ref}$, where I is the acoustic power and I_{ref} is the reference power, usually 10^{-12} watts.

Sound Pressure Level --- Amplitude of sound expressed on the decibel scale, abbreviated SPL, this is defined as $10 \log_{10} (p^2/p_{ref}^2)$, where p is the root mean square acoustic pressure and p_{ref} is the reference pressure, usually 2 x 10^{-5} n/m^2 .

Pure Tone -- A sound in which the sound pressure changes sinusoidally with time.

Radiation -- The process of turning structure-borne noise into airborne noise.

Reverberation --- The persistence of previously generated sound caused by reflection of acoustic waves from the surfaces of enclosed spaces.

Shielding -- With respect to buildings, the tendency of the portions of a structure facing a noise source to attenuate the noise before it reaches portions of the structure not facing the noise source. The shielding building faces can be thought of as creating an "acoustical shadow".

Sound Insulation -- (a) Measures taken to reduce the transmission of sound, usually by acoustical materials; (b) the property of a partition that opposes the transmission of sound from one side to the other.

GLOSSARY (Concluded)

Sound Level Meter -- An instrument for the direct measurement of sound pressure level. It consists of a microphone, an amplifier, a calibrated attenuator, and a display to indicate the measured sound levels. Various frequency weighting networks, such as A-weighting, are often incorporated.

Structure-Borne Noise -- A condition when the sound waves are being carried by a solid material. Airborne noise can be created from the radiation of structureborne noise into the air.

STC -- Abbreviation for Sound Transmission Class, a single number rating of the transmission loss of an interior construction element, representing the attenuation of A-weighted interior noise.

TL --- Abbreviation for Transmission Loss, the attenuation (in decibels) of sound transmitted through a panel. In general, TL is a function of frequency.

BIBLIOGRAPHY

Anon., "Methods for the Calculation of the Articulation Index, "ANSI 53.5-1969, American National Standards Institute, New York.

Bastenier, H., Klosteckoetter, W., and Large, J. B., "Damage and Annoyance Caused by Noise, "Submission to Panel I Ad Hoc Group on Noise Abatement Policy, OECD Environmental Committee, February 1976.

Beranek, L. L., "Airplane Quieting II Specification of Acceptable Noise Levels," Trans. Amer. Soc. Mech. Engrs., Vol. 69, 1947, pp.97–100.

Beranek, L. L., Acoustics. McGraw–Hill Book Company, New York, 1954.

- Beranek, L. L., Noise Reduction. McGraw-Hill Book Company, New York, 1960.
- Beranek, L. L., Noise and Vibration Control. McGraw-Hill Book Company, New York, 1971, p. 585.
- Beranek, L. L., and Rudmose, H. W., "Sound Control in Airplanes," JASA Vol. 19, No. 2, March 1947, pp. 357–364.
- Beranek, L. L., Blazier, W. E., and Figwer, J. J., "Perferred Noise Criterion (PNC) Curves and Their Application to Rooms," JASA, Vol. 50, No. 5, Part 1, 1971, pp. 1223–1228.
- Bureau of the Census, Statistical Abstract of the United States, U.S. Department of Commerce, Washington, D.C., 1975.
- Cantrell, R. W., "Pathophysiological Effects of Noise," 51st Convention of the Audio Engineering Society, Preprint No. 1017 (G-1), May 1975.
- Crocker, Malcolm, (Editor), Inter-Noise 72, Tutorial Papers on Noise Control, International Conference on Noise Control Engineering, Washington, D. C., October 4-6, 1972.
- Crook, M. A., and Langdon, F. J., "The Effects of Aircraft Noise in Schools Around London Airport, "Journal of Sound and Vibration, Vol. 34, No. 2, May 22, 1972.
- Dagostino, Frank R., Estimating in Building Construction, Reston, Virginia, Reston Publishing Company, 1973.

Davy, Bruce A., and Skale, Steven R., "Insulation of Buildings Against Highway Noise," El Segundo, California, Wyle Research, August 1976.

"Effects of Noise on People," Environmental Protection Agency, NTID300.7, December 1971. English, J. Morley, Cost Effectiveness, New York: John Wiley and Sons, 1968.

- Farley, J. H., Chief Editor, Hospital/Healthcare Building Costs, New York: McGraw Hill Information Systems Company, 1976.
- Federal Aviation Administration, Airport Master Plans, Washington, D. C. February, 1971.
- Federal Aviation Administration, "Profiles of Scheduled Air Carrier Departure and Arrival Operations," U. S. Department of Transportation, Washington, D. C., 1976.
- Federal Energy Administration, "Energy Conservation in New Building Design," Conservation Paper No. 438, August 1975.
- Federal Housing Administration, Noise Control in Multifamily Dwellings," Washington, D. C., January, 1963.
- Fife, Daniel and Rappaport, E. "Noise and Hospital Stay," Public Health Brief, Amer. J. Pub. Health, July, 1976, 66(7).
- French, N. R., and Steinberg, J. C., "Factors Governing the Intelligibility of Speech Sounds," JASA, Vol. 19, 1947, pp. 90-119.
- Godfrey, Robert Sturgis, (Ed. in Chief), Building Systems Coll Guide, First Edition, Duxbury, Massachusetts: Robert Snow Means Company, Inc., 1976.

Grandjean, E., Zeit. Fur Praeventiv-Medizin, 4, e, 1959.

- Highline Public Schools, "Aircraft Noise Study Remedial Construction/Schools, Seattle, Washington, August, 1973.
- Illinois Institute of Technology Research Institute, "Compendium of Materials for Noise Control, Cincinnati, Ohio: U.S. Department of Health, Education, and Welfare, June, 1975.
- "Impact Characterization of Noise Including Implication of Identifying and Achieving Levels of Cumulative Noise Exposure," Environmental Protection Agency, Washington, D. C., July 27, 1973.
- "Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare With an Adequate Margin of Safety," Environmental Protection Agency, 550/9-74/004, March 1974.

Jablonski, W. A., "Insulating Buildings from Aircraft Noise," Technical Report T/S 76-1, Vienna, Virginia, Trans Systems Corporation, 1976. Kapsch, Robert J., (Ed.) "Health and Medical Facilities Design," Proceedings of the First Federal Agency Workshop, Gaithersburg, Maryland, December 5, 1972, Issued July, 1974.

- Kryter, K. D., "Methods for the Calculation and Use of the Articulation Index," JASA, Vol. 34, 1962, pp. 1689-1697.
- Kryter, K. D., "Validation of the Articulation Index," JASA, Vol. 34, 1962, pp. 1698–1702.

Kryter, K. D., The Effects of Noise on Man, Academic Press, 1970.

- Lukas, J. S., "Noise and Sleep: A Literature Review and a Proposed Criterion for Assessing Effect," JASA, Vol. 58, No. 6, December 1975, pp. 1232–1242.
- Lukas, J. S., "Noise-Level Units and Objective and Subjective Sleep Quality," Proceedings Inter-Noise 76, Washington, D. C., April 1976, pp. 493–498.

Lukas, J. S., personal communication, December 20, 1976.

- Nagel, D. C., "Is Intelligibility Enough?" Proceedings MiniSymposium on Noise and Speech Interference, NASA TM X-72696, September 1975.
- Miller, J. D., "Effects of Noise on People," JASA, Vol. 56, No. 3, September 1974, pp. 729–764.
- Mills, J. E., "Noise and Children: A Review of Literature," JASA, Vol. 58, No. 4, October 1975, pp. 767–779.
- Moselle, Gary, "National Construction Estimator," 25th Edition, Solana Beach, California: Craftsman Book Company of America, 1977.
- "Noise in Hospitals," U. S. Department of Health, Education and Welfare, Public Health Service Publication No., 930–D–11, 1963.
- Pearsons, K. S., "Annoyance of Time Varying Noise While Listening Speech," Proceedings Mini Symposium on Noise and Speech Interference, NASA TM X-72696, September 1975.
- Pearsons, K. S., "Recent Developments in the Effects of Noise on Speech Communication," Proceedings Inter-Noise 76, Washington, D. C., April 1976, pp. 487–492.
- Pearsons, K. S., Friedman, J., Fidell, S., Globus, G., and Bennett, R. L., "Effect of Cessation of Late-Night Landing Noise on Sleep Electrophysiology in the Home," NASA Report CR-132543, December 1974.

- Petersen, Stephen R., "Retrofilling Existing Housing for Energy Conservation: An Economic Analysis," Washington, D. C., National Bureau of Standards, December, 1974.
- Peterson, A. P. G., and Gross, E. E., Jr., Handbook of Noise Measurement, Concord, Massachusetts: General Radio, 1972.
- Plotkin, K. J., "The Assessment of Noise at Community Development Sites," Wyle Research Report WCR 75-6, October 1975.
- "Public Health and Welfare Criteria for Noise," Environmental Protection Agency, 550/9-73/002, July 27, 1973.
- Rackl, R., Sutherland, L., and Swing, J., "Community Noise Countermeasures Cost-Effectiveness Analysis," Wyle Research Report WCR 75-2, July 1975.
- Sabine, Hale J., Acoustical and Thermal Performance of Exterior Residential Walls, Doors and Windows, Washington, D. C., U. S. Department of Commerce, November, 1975.
- Scott, Geraldine R., Statistics of State School Systems 1971–72, U. S. Department of Health, Education and Welfare/Education Division, U. S. Government Printing Office, Washington, D. C. 1975.
- Simpson, M. A., and Bishop, D. E., "Measurement of Classroom Noise Environments," JASA, Vol. 57, Supplement No. 1, 1975, p. 514.
- Sutherland, L. C., Braden, M. H., and Colman, R., "A Program for the Measurement of Environmental Noise in the Community and its Associated Human Response, Volume 1 – A Feasibility Test of Measurement Techniques," DOT Report DOT-TST-74-5, December 1973.
- Thiessen, G. J., "Effects of Noise During Sleep," presented at 134th Meeting of American Association for Advancement of Science, Boston, December 1969.
- Tiom, T., "A Procedure for Reducing Noise in School Rooms Near an Airport," Proceedings 6th International Congress on Acoustics, Tokyo, Japan, August, 1968, pp. F73-76.
- Tolhurst, G. C., "Objectivity-Subjectivity Continuum in Intelligibility Testing," Proceedings MiniSymposium on Noise and Speech Interference, NASA, TM X-72696, September 1975.
- Towne, R. M. et al, Noise in Highways located Near Freeways, Seattle, Washington: Towne and Associates, Inc., January 1964.

Williams, J., and Warf, Sallie L., Education Directory, 1975–1976, U. S. Dept. of Health, Education, and Welfare, Washington, D. C., 1976.

"Uniform Building Code" 1961 Edition, Vol. 1, Los Angeles: International Conference of Building Officials, 1961.

U. S. Bureau of the Census, "1972 County and City Data Book," U. S. Government Printing Office, Washington, D. C., 1972.

BI - 5

APPENDIX A

TECHNICAL SUPPORTING INFORMATION FOR DEFINITION OF THRESHOLD LEVELS OF NOISE EFFECTS

The data presented in this Appendix provides the technical background information required to support selection of the threshold levels of noise effects specified in Chapter 2.

The adverse effects of noise on people can be grouped into three general categories: degradation of health, behavioral reactions, and activity interference.^{A-1} The characteristics of the noise impact related to each of these categories is discussed in the following pages. Interference with noise-sensitive activities occurs for lower levels of noise exposure, and was therefore chosen as the basis for defining threshold noise levels for this report.

A-1 Physical Health Effects

Adverse physical health effects from noise exposure occur in three forms: hearing damage, physical pain or injury, and physiological reaction. The immediate physical sensation of discomfort due to noise generally occurs above 120 dB, while auditory pain occurs somewhere between 135 and 140 dB, and actual immediate injury for unprotected ears at levels above 150 dB.^{A-1,A-2}

The levels associated with hearing damage due to accumulated exposure to noise cover a large range reflecting the variation of individual susceptibility to such exposure. Levels specified as criteria for hearing protection vary greatly because of this and because of the intended degree of protection. The Occupational Safety and Health Administration regulations limit 8-hour workplace noise exposure to a maximum of 90 dBA.^{A-3} This level represents protection against long-term hearing disability. At the opposite extreme, Kryter^{A-2} has reported that 8-hour level of 65 dBA will result in little or no hearing loss in at least 75 percent of people. Higher levels can be tolerated for shorter times, and total exposure is probably best represented in terms of total acoustic energy. In a review of hearing loss information, the United States Environmental Protection Agency^{A-4} has identified an 8-hour Leg of 75 dBA as an appropriate level to protect against hearing loss.

Various physiological responses to noises have been noted and measured. These are in the nature of involuntary stress reactions which could lead to long-term health problems. These physiological responses, however, are reported not to be measurable for A-weighted sound levels below about 70 dB. A-2, A-5, A-6, A-7 It is commonly held that long-term adverse non-auditory health effects will not occur if exposure to noise is less than the exposures recommended to prevent hearing loss. A-1, A-4, A-5, A-6

A-1

A-2 Psychological and Behavioral Reactions

Psychological or behavioral reactions to noise exposure are of two types: interference with the performance of non-auditory tasks, and general annoyance.

A-2.1 Task Performance

Although there are little and somewhat conflicting data reported concerning the performance of non-auditory tasks in the presence of noise, some conclusions about this effect can be made. For steady noises, interference with non-verbal task performance does not occur for A-weighted levels below 90 dB. A-1, A-4, A-5, A-6 However, levels below 90 dB may have an effect if the noises are intermittent, unexpected, uncontrolled, or contain predominantly high frequencies. A-4, A-5, A-6 As a lower bound to prevent task interference for any type of noise, Kryter A-2 suggests an A-weighted level of about 70 dBA. It should be noted that all the reported threshold levels for task interference are well above those identified for speech and sleep interference.

A-2.2 Annoyance

Unlike the adverse hearing and physiological effects of noise discussed above, threshold levels for annoyance cannot be separated from those identified for activity interference. Results of studies which attempt to determine annoyance indicate that although annoyance may occur for a variety of reasons (and is highly subjective), interference with some activity, particularly those associated with communication, are quite important in causing the subjective reaction of annoyance, $A^{-4}, A^{-5}, A^{-6}, A^{-9}, A^{-10}$ Intrusion levels identified from interference considerations often agree with levels identified from annoyance reaction.^{A-11} Due to the link between activity interference and annoyance and to the degree of subjectivity associated with annoyance, it was decided not to directly consider annoyance in the specification of threshold levels for schools and hospitals. However, because of this link, it can be concluded that noise levels sufficiently low to produce no activity interference will probably produce little or no annoyance.

A-3 Activity Interference

As developed in this section, interference with noise-sensitive activity generally occurs at a lower level than other adverse effects of noise. For this reason, activity interference was chosen as the basis for defining the noise impact on occupants of public buildings due to aircraft operations. The following sections provide a discussion of the technical aspects of noise interference and the rationale used for identification of realistic threshold levels for noise effects on occupants of schools, hospitals and public health facilities near airports.

A-3.1 Speech Interference in Schools

The primary activity sensitive to noise intrusion for schools is speech communication. In addition to the requirement for the physical reception and recognition of spoken sounds, provision of a noise environment which does not interfere with this activity is important for two other reasons:

- A noise environment which is conducive to learning is required. After review of the latest research concerning noise and learning for children, Mills^{A-13} concludes that a noise environment which would cause speech interference for adults would be sufficient to interfere with the learning process for children particularly in the development of communication skills.
- 2. The short-term disruption of the classroom causing direct results such as loss of flow of lessons. In a recent survey of teachers in schools exposed to air-craft noise from London Airport (Heathrow),^{A-9} it was found that the interference with verbal communication and the resulting disruption was the most often cited nuisance of aircraft noise intrusions. The disruptive effects of periods of communication interference on the daily educational process in the classroom has also been recently cited by Miller.^{A-5}

Aspects of Verbal Communication

7

Interference with speech communication in the presence of background noise is governed by the speech spectrum level at the listener's ear and by the spectrum level of the background noise. Some frequencies are more important to speech reception than others, so that the overall speech interference is determined by the signal-to-noise ratio as a function of frequency. The spectrum level of speech at the listener's ear is dependent on the spectral characteristics and voice effort of the speaker and the propagation of the signal between the speaker and listener. For typical indoor speech communication, this propagation is governed by the distance between speaker and listener and the reverberation in the room.^{A-14}

The Articulation Index (AI) was developed by French and Steinberg^{A-15} as an estimate of speech interference by noise based on the speech and background noise level at a listener position. As originally developed, AI indicates approximately the degree to which the background noise penetrates into the range of levels of the speech signal in 20 frequency bands contributing equally to AI. The method of AI determination has since been further developed to allow calculation using octave or 1/3 octave frequency band widths.^{A-10}, A-17 These procedures are published as ANSI Standard S3.5.^{A-18}

Numerous studies have been conducted to relate speech interference as specified by AI to various measures of intelligibility.^{A-2} These studies typically consider the percentage of words or sentences correctly perceived in a given level of speech and interfering noise for normal adults familiar with the language.^{A-2}, A-12 Generally, for a given AI, word comprehension is less than sentence comprehension due to the redundancies exhibited in normal speech. There are two qualitative considerations which must be made when applying noise criteria based on speech intelligibility to classroom situations. First, children are not as familiar with language as adults and hence may miss some of the verbal cues and redundancies which aid adults in communication. For this reason it has been concluded that background noise levels should be lower for children to achieve the same level of speech comprehension as adults. A-5, A-6, A-13, A-19, A-20 Second, communication quality cannot be judged entirely on the basis of intelligibility. A-21, A-22 Nagel A-22 has concluded that the effectiveness of communication can be adversely affected even by noise levels which allow perfect intelligibility. This phenomenon occurs because the effort required to process speech information in the presence of background noise increases with levels of this noise although perfect intelligibility can be maintained.

While there is no quantitative adjustment available for these last two factors, in practice they can be accommodated (albeit somewhat arbitrarily) by selecting a slightly conservative intelligibility criterion.

Speech Interference Level

Using the concepts of A1, the speech interference level (SIL) concept was developed by Beranek^{A-23} as a simplified alternative to A1. The SIL as originally defined is the arithmetic average of the levels of the background noise in three octave bands important to speech communication. The relationship of this background noise measure was originally developed for speech communication in aircraft by Beranek and Rudmose^{A-24} and later elaborated further by Beranek.^{A-25} As a result of this work, a table of maximum SIL's for which "satisfactory" speech intelligibility in aircraft cabins would be obtained for average male voices was developed. The maximum SIL values were given as a function of speaker-listener separation with vocal effort as a parameter. This table has since been displayed graphically and appears frequently in the literature in several forms.^{A-2}, A-4, A-5, A-6, A-19, A-20, A-20, A-27, A-28 The extension of this original work to include subjective evoluation of the corresponding SIL, the addition of "communicating" and "expected" voice levels, and the conversion to other measures of noise such as A-weighted sound level and perceived noise level has recently been reported by Webster, A-20 Although the various forms of this basic speech interference prediction by Beranek^{A-23} are widely reported, caution must be exercised in their use for purposes of this report as they are based on an AI of about 0.4. This value of AI corresponds to approximately 85 percent correct sentence and 62 percent phonetically balanced word reception for average adults.^{A-18}

Requirements for Classrooms

The Articulation Index method was used to evaluate the noise environment requirements for classrooms. This method was chosen in order that speech level, room characteristics, and noise level of the intrusion could all be properly incorporated in the determination of required environment. To use AI, it is first necessary to establish the average sound level of the speech signal at the receiver. For this purpose, normal female voice spectrum levels compiled by Kryter^{A-2} were used. For the classroom environment, it was assumed that instructors would typically use a raised voice adding about 6 dB to normal voice level^{A-2}, A-25 To project the voice level from the reference free-field specification, some characteristics of the classroom must be assumed. Although physical classroom characteristics may vary considerably, a maximum speaker/listener separation of 9 meters (29.5 feet) and a total room absorption of 600 sabins (English units) were assumed. These assumed parameters agree well with those determined in the measurement portion of this program as well as with average values reported elsewhere $^{A-29}$, $^{A-30}$, $^{A-31}$ It should be further noted that the voice level at the listener is only slightly affected by these assumed values as the 9m position is well within the reverberant field of the room, $^{A-30}$ and a range of 300 to 1,000 sabins corresponds to only a 2.7 dB variation in speech level at 9 meters from a speaker. Using the speech level data and the assumed room characteristics, the average speech level at a 9 m listener position was determined. The A-weighted level of the projected speech signal was 61.6 dB at 9m which compares quite well with the measured average speech A-weighted level of 62 dB at 7m recently reported by Pearsons.

, 1

Another requirement for use of AI in the specification of a communication environment is the relative spectrum level of the interfering noise. For this purpose, an average outdoor aircraft noise spectrum combined for takeoff and landing operations was used to obtain the relative octave band spectral shape A^{-33} This shape was then modified for use indoors by application of average exterior to interior noise reduction data in octave bands (Appendix N of Reference A-34).

Using the above information and the procedures for determination of AI from octave band data as specified by ANSI 53.5^{A-1B} the relationship between indoor A-weighted sound level and resulting AI was calculated. This relation was shown in Figure 2-2 of Chapter 2.

The relation between AI and A-weighted noise falls into two ranges, each approximately a straight line. At levels below the transition at 45 dBA, where AI = 0.98, very small gains in AI would be obtained for large reductions in level. This value of AI produces for average adults correct recognition of 100 percent of first-presented sentences and 98 percent phonetically balanced (PB) from a 1,000-word list. Since intelligibility is not perfect, there is clearly some interference at this level. Intelligibility is very good at this level, however, so that in view of the marked change in slope at lower levels it would not be reasonable to establish a criterion at a lower level. We therefore identify a level of 45 dBA as the threshold level for speech interference.

As discussed previously, the characterization of the noise environment in the classroom depends both on the intensity of each intrusion and frequency with which they occur. However, given that the noise level of 45 dBA is a threshold at which interference with the speech activity will begin, it can be compared to steady-state sound levels previously recommended for classrooms. These A-weighted noise levels range from 35 to 50 dB.^{A-2}, A-4, A-5, A-6, A-19, A-28, A-30, A-30, A-37, A-38 Further, it can be shown that the equivalent PNC of the identified A-weighted level is about 38 dB. This compares with PNC values recommended by Beranek, Blazier, and Figwer for classrooms of 30 to 40 dB.^{A-35}

Although the noise level of 45 dBA has been identified as that level at which communication interference due to aircraft noise will begin in classrooms, assessment of the noise environment of any given classroom also depends on the existing background noise in the absence of aircraft noise. Recent noise measurements in 72 classrooms in the

A-5

absence of aircraft noise and verbal communication indicated levels from 42 to 67 dBA.^{A-39} While much of the measured noise may be attributable to sources which would stop while a teacher is speaking (students talking, shuffling feet, etc.), background levels during instruction could fall within this range. When selecting an aircraft noise criterion for a classroom, the actual background level as well as the threshold of 45 dBA must be considered as a lower bound.

A-3.2 Sleep Interference in Hospitals

Because sleep may be crucial to patient recovery, and is a critical activity for patients in hospitals, interference with sleep is the criterion used in the consideration of the noise environment of hospitals. Although research has been done on the immediate effects of noises, the link between sleep disturbance and well-being has not been demonstrated quantitatively even though adverse effects of sleep disturbance are postulated by many sleep investigators.^{A-2}, A-5, A-13</sup> Indirect evidence of this assertion is afforded by surveys of community reaction to aircraft noise which indicate that sleep interference is a significant contributor to general annoyance.^{A-4} Although there has been some recent research which indicates that people may adjust to sleeping in intrusive aircraft noise environments over a period of years,^{A-40} no such adaptation would be expected during a short period of hospitalization.

Sleep Disturbance From Noise Exposure

There has been a number of studies reported which relate sleep disruption and awakening to steady and intermittent noises. In a compilation of recent data, the U.S. Environmental Protection Agency^{A-19} found that for steady noises, sleep disturbance begins when the noise level reaches about 35 dBA. In a study of sleep awakening due to steady noise, Grandjean^{A-41} found that a sound level corresponding to a noise level of 36 dBA produced awakening in 10 percent of his subjects.^{A-42} The EPA compilation of sleep data also indicated that single event maximum levels of 40 dBA result in a probability of awakening defected that single event maximum levels of 70 dBA result in a 30 percent probability of awakening defected that subjects either shifted to a shallower stage of sleep or awakened for maximum levels between 40 and 45 dBA.^{A-43} Thiessen further found similar response in 50 percent of his subjects for a maximum level of 50 dBA.^{A-42} Also for aircraft noise approximated by the (A-weighted) Sound Exposure Level (SEL), Lukas^{A-44}, A-45</sup> determined that sleep disruption occurs at a rate of about 5 to 10 percent for an SEL of 52 dB. Although Lukas^{A-40}, A-45</sup> states that the highest correlation between sleep disruption and noise exposure exists when both intensity and duration are taken into account, the maximum level producing 5 to 10 percent disruption is about 42 dBA.

As will be noted from review of above data, there is some variation in the response level associated with given noise levels. This variation is likely a result of differences in age of subjects, background noise level during the experiment or other parameters which

A-6

may affect the results but were not always reported. To simplify this situation, Lukas^{A-46} has recently estimated the degree of sleep interference for various single event A-weighted maximum sound levels based on a composite of the reported laboratory data through 1975. The results of this determination were presented in Figure 2-3 of Chapter 2.

Requirements for Hospitals

0

6

To define interference with the sleep activity in hospitals, the level at which awakening begins to occur was considered as the level corresponding to the beginning of interference. This criterion was chosen due to the lack of data relating sleep disruption without awakening to physical and psychological well-being. Applying this criterion to the data shown in Figure 2-3 of Chapter 2, the threshold level for interference with the activity of sleeping is 40 dBA.

As with the case of classrooms, characterization of the noise environment in hospitals depends on the intensity of each intrusion and the frequency of their occurrence. However, as with classrooms, the threshold level of 40 dBA identified above can be compared to various other recommended interior sound levels for hospitals and sleeping environments. For steady noises the recommended interior noise levels for hospitals range between 34 and 47 dBA.^{A-2}, A-30, A-35, A-38 For further comparison, in a previous review Wyle^{A-42} concluded that interior noise levels above 45 dBA are likely to cause sleep disturbance for a significant percentage of the population.

Characterization of the noise environment in any specific hospital is dependent on background levels in the absence of aircraft noise as well as on the intensity, duration, and rate of occurrence of aircraft noise intrusions. Background noise levels in patient rooms of eight hospitals have been measured and reported.⁴⁴⁷ The results of this study indicated that the background noise level ranged from 35 to 60 dBA with the average level for 24 hours being typically between 40 and 45 dBA.⁴⁴⁷

A-4 Summary

Based on the literature cited in this review, interior levels which define the approximate threshold of noise effects of people from aircraft noise have been estimated for schools, hospitals and public health facilities. The A-weighted sound levels defining these thresholds are:

> Schools $L_A = 45 \, dBA$ (Speech Interference) Hospitals (and Public $L_A = 40 \, dBA$ (Sleep Interference) Health Facilities)

These identified values define those noise levels below which interference by the noise is not expected to occur. While lower levels have been suggested in some cases by others as desired design goals for new schools and hospitals, these are not supported by the literature. It is believed that the above levels represent realistic measures of the desired thresholds which are supported by the literature.
REFERENCES - APPENDIX A

A-1.	Wyle Laboratories, "Decision Process in the Development of Noise Regulations in the United States", Wyle Research Report WCR 75–19, January 1976.	
A-2.	Kryter, K.D., The Effects of Noise on Man, Academic Press, 1970.	
A-3.	Occupational Safety and Health Act of 1970, P.L. 91–596.	
A-4.	"Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare With an Adequate Margin of Safety", Environmental Protection Agency, 550/9-74-004, March 1974.	
A-5.	Miller, J.D., "Effects of Noise on People", JASA, Vol. 56, No. 3, September 1974, pp. 729–764.	
A-6.	"Effects of Noise on People", Environmental Protection Agency, NTID 300.7, December 1971.	
A-7.	Cantrell, R.W., "Pathophysiological Effects of Noise", 51st Convention of the Audio Engineering Society, Preprint No. 1017 (G–1), May 1975.	
A-8.	Loeb, M., Jones, P.D., and Cohen, A., "Effects of Noise on Non–Auditory Sensory Functions and Performance", NIOSH Research Report, April 1976, U.S. Department of Health, Education and Welfare.	
A-9.	Crook, M.A., and Langdon, F.J., "The Effects of Aircraft Noise in Schools Around London Airport", Journal of Sound and Vibration, Vol. 34, No. 2, May 22, 1974.	•
A-10.	Webster, J.C., "Psychoacoustic Problems With Noise Control", 51st Convention of the Audio Engineering Society, Preprint No. 1028 (G-3), May 1975.	
A-11.	Plotkin, K.J., "Community Noise Planning for a Very Large Wind Tunnel", Paper DD13, 85th Meeting, Acoustical Society of America, Boston, Massachusetts, April 1973.	
A-12.	Pearsons, K.S., "Annoyance of Time–Varying Noise While Listening to Speech", Proceedings MiniSymposium on Noise and Speech Interference, NASA TMX-72696, September 1975.	
A-13.	Mills, J.E., "Noise and Children: A Review of Literature", JASA, Vol. 58, No. 4, October 1975, pp. 767–779.	
A-14.	Knudsen, V.O., and Harris, C.M., "Acoustical Designing in Architecture", John Wiley & Sons, New York, 1950.	

ţ

REFERENCES - APPENDIX A (Cont'd)

French, N.R., and Steinberg, J.C., "Factors Governing the Intelligibility of A-15. Speech Sounds", JASA, Vol. 19, 1947, pp. 90-119. A-16. Kryter, K.D., "Methods for the Calculation and Use of the Articulation Index", JASA, Vol. 34, 1962, pp. 1689-1697. A-17. Kryter, K.D., "Validation of the Articulation Index", JASA, Vol. 34, 1962, pp. 1698-1702. A-18. Anon., "Methods for the Calculation of the Articulation Index", ANSI S3.5-1969, American National Standards Institute, New York. "Public Health and Welfare Criteria for Noise", Environmental Protection Agency, A-19. 550/9-73/002, July 27, 1973. A~20. Bastenier, H., Klosteckoetter, W., and Large, J.B., "Damage and Annoyance Caused by Noise", Submission to Panel 1 Ad Hoc Group on Noise Abatement Policy, OECD Environmental Committee, February 1976. A-21. Tolhurst, G.C., "Objectivity-Subjectivity Continuum in Intelligibility Testing" Proceedings MiniSymposium on Noise and Speech Interference, NASA TMS-72696, September 1975. Nagel, D.C., "Is Intelligibility Enough?", Proceedings MiniSymposium on Noise A-22. and Speech Interference, NASA TMX-72696, September 1975. Beranek, L.L., "Airplane Quieting II. Specification of Acceptable Noise Levels", A-23. Trans. Amer. Soc. Mech. Engrs., Vol. 69, 1947, pp. 97-100. A-24. Beranek, L.L., and Rudmose, H.W., "Sound Control in Airplanes", JASA, Vol. 19, No. 2, March 1947, pp. 357-364. A-25. Beranek, L.L., Acoustics, McGraw-Hill Book Company, New York, 1954. Webster, J.C., "Effects of Noise on Speech Intelligibility", Proc. Conf. Speech A-26. Hearing Assoc., Washington, D.C., February 1969, pp. 49-73. Webster, J.C., "SIL - Past, Present, and Future", Sound and Vibration, Vol. 23, A-27. August 1969, pp. 22-26. "Impact Characterization of Noise Including Implication of Identifying and A-28. Achieving Levels of Cumulative Noise Exposure", Environmental Protection Agency, Washington, D.C., July 27, 1973.

· . .

REFERENCES - APPENDIX A (Cont'd)

A-29.	"The Use of Architectural Acoustical Material — Theory and Practice", Acoustical Materials Association, A.I.A. No. 39A, New York, New York, 1968.
A-30.	Beranek, L.L., <u>Noise and Vibration Control</u> , McGraw–Hill Book Company, 1971, p. 585.
A-31.	Tiom, T., "A Procedure for Reducing Noise in School Rooms Near an Airport", Proceedings 6th International Congress on Acoustics, Tokyo, Japan, August 1968, pp. F73–76.
A-32.	Pearsons, K.S., "Recent Developments in the Effects of Noise on Speech Communi- cation", Proceedings InterNoise 76, Washington, D.C., April 1976, pp. 487–492.
A-33.	Plotkin, K.J., "The Assessment of Noise at Community Development Sites", Wyle Research Report WCR 75-6, October 1975。
A-34.	Sutherland, L.C., Braden, M.H., and Colman, R., "A Program for the Measure- ment of Environmental Noise in the Community and its Associated Human Response, Volume I – A Feasibility Test of Measurement Techniques", DOT Report DOT-TST- 74-5, December 1973.
A-35.	Beranek, L.L., Blazier, W.E., and Figwer, J.J., "Preferred Noise Criterion (PNC) Curves and Their Application to Rooms", JASA, Vol. 50, No. 5, Part 1, 1971, pp. 1223–1228.
A-36.	Wyle Laboratories, "Palmdale Intercontinental Airport Study of Noise Attenuation Requirements for Palmdale Schools and Residences Based on NEF Contours Projected for the 1985 Time Period", Wyle Research Report WCR 71–3, November 1971.
A-37.	Rackl, R., Sutherland, L., and Swing, J., "Community Noise Countermeasures Cost-Effectiveness Analysis", Wyle Research Report WCR 75–2, July 1975.
A-38.	Beranek, L.L., Noise Reduction, McGraw-Hill Book Company, 1960.
A-39.	Simpson, M.A., and Bishop, D.E., "Measurement of Classroom Noise Environments", JASA, Vol. 57, Supplement No. 1, 1975, p. S14.
A-40.	Pearsons, K.S., Friedmann, J., Fidell, S., Globus, G., and Bennett, R.L., "Effect of Cessation of Late-Night Landing Noise on Sleep Electrophysiology in

A-41. Grandjean, E., Zeit. Fur Praeventiv-Medizin, 4, e, 1959.

the Home", NASA Report CR-132543, December 1974.

REFERENCES - APPENDIX A (Concluded)

- A-42. Wyle Laboratories, "Supporting Information for the Adopted Noise Regulations for California Airports", Wyle Research Report WCR 70-3(r), January 1971.
- A-43. Thiessen, G.J., "Effects of Noise During Sleep", presented at 134th Meeting of American Association for Advancement of Science, Boston, December 1969.
- A-44. Lukas, J.S., "Noise and Sleep: A Literature Review and a Proposed Criterion for Assessing Effect", JASA, Vol. 58, No. 6, December 1975, pp. 1232-1242.
- A-45. Lukas, J.S., "Noise-Level Units and Objective and Subjective Sleep Quality", Proceedings InterNoise 76, Washington, D.C., April 1976, pp. 493-498.
- A-46. Lukas, J.S., personal communication, December 20, 1976.
- A-47. "Noise in Hospitals", U.S. Department of Health, Education and Welfare, Public Health Service Publication No. 930-D-11, 1963.

A-11

APPENDIX B

DEVELOPMENT OF THE EXTERIOR WALL RATING (EWR)

B-1 Exterior-Interior Noise Reduction

The following procedure can be employed to obtain an expression describing the exterior-to-interior (outdoor-to-indoor) noise attenuation of a building structure.

For an exterior single-frequency sound source and a reverberant receiving room, the sound intensity incident at the location of an exterior wall of the receiving room, assuming a free progressive plane wave, is

$$I_1 = \frac{P_1}{P_C}$$
(B-1)

where p_1^2 = The exterior free-field mean square sound pressure;

 $\rho c =$ The acoustic impedance of air.

The power which will be rediated into the receiving room by the wall is

$$W = \tau I_1 S = \tau \left(\frac{p_1^2}{\rho c}\right) S \tag{B-2}$$

where τ = The transmission coefficient of the wall at the source frequency;

S = The surface area of the wall exposed to the noise source.

The steady-state reverberant intensity in the receiving room, assuming a perfectly diffuse field, will become

$$I_2 = \frac{W}{A} = \frac{P_2^2}{4\rho_c}$$
(B-3)

where A = The total absorption in the room at the source frequency;

 $p_2^2 =$ The reverberant space-averaged mean square sound pressure in the receiving room.

Substituting the value of W from Equation (B-2),

$$\frac{\tau p_1^2 S}{\rho_c A} = \frac{p_2^2}{4\rho_c} \quad \text{or} \quad \frac{P_1^2}{p_2^2} = \frac{A}{4\tau S}$$
(B-4)

If 10 times the \log_{10} of each side of Equation (B-4) is taken,

$$10 \log_{10} \frac{P_1^2}{P_2^2} = 10 \log_{10} \frac{1}{\tau} + 10 \log_{10} \frac{A}{S} - 6, dB \qquad (B-5)$$

Now in general, sound pressure level is defined as

$$SPL = 10 \log_{10} \frac{p^2}{\frac{p}{p_{ref}^2}}, dB$$

where p^2 = The mean square sound pressure;

p_{ref} = A reference pressure.

Thus,

$$SPL_1 - SPL_2 = 10 \log_{10} \frac{P_1^2}{P_{ref}^2} - 10 \log_{10} \frac{P_2^2}{P_{ref}^2} = 10 \log_{10} \frac{P_1^2}{P_2^2}, dB$$
 (B-6)

Defining transmission loss as

$$TL = 10 \log_{10} \frac{1}{\tau}$$
, dB (B-7)

Substituting Equations (B-6) and (B-7) into (B-5),

$$SPL_1 - SPL_2 = TL - 10 \log_{10} S/A - 6, dB$$
 (B-8)

where $SPL_1 =$ The free-field exterior sound pressure level which would exist, in the absence of the transmitting wall, at the wall's exterior surface;

 SPL_2 = The average interior sound pressure level in the receiving room;

TL = The transmission loss of the wall at the frequency under consideration;

S and A = Defined earlier.

This difference between the free-field exterior sound level and average interior sound level is referred to as the noise reduction of the room or structure.

Equation (B-8) gives the noise reduction of a uniform structure only for a singlefrequency or narrow-frequency band of sound since transmission loss and absorption are frequency dependent. Thus, calculation of the noise reduction in overall sound level provided by a structure for broad band incident sound would require knowledge of the spectral levels of the incident sound, multiple calculations of spectral noise reduction, and combination of the resulting spectral interior levels into a single broad band interior sound level. To simplify this process, a single number transmission rating which synthesizes the spectral TL values into one number indicative of the broad band transmission characteristic of a structure would be desirable. If, in addition, frequency-independent values could be used for the $10 \log_{10}$ (S/A) term, an equation in the form of Equation (B-8) could be used to calculate the broad band noise reduction of a structure in a single step.

A rating which approximates the broad band transmission characteristics of structures, called External Wall Rating (EWR), has been developed for this type of application to calculate outdoor-indoor noise reduction of incident A-weighted sound levels.^{B-1} In addition, data were obtained in this program which show that typical values of total broad band interior absorption for the types of rooms encountered in this study are nearly frequency independent. This same insensitivity of interior absorption with frequency was observed for tests in over 100 rooms in residences.^{B-2} These two developments allow application of the following equation:

$$SPL - SPL = NR = EWR - 10 \log S/A - 6 - C, dB$$
 (B-9)

where NR = Difference between (1) the free-field A~weighted sound level which would exist, in the absence of the structure, at the structure exterior surface (SPL), and (2) the average interior A-weighted sound level (SPL);

EWR = External Wall Rating;

S = Transmitting surface area;

A = Typical interior absorption value;

C = A constant which is a function of the source spectrum and is described later in Section B-2.4.

Note that Equation (B-9) applies only to a single homogeneous structure.

B-2 Development of EWR Rating Scheme

B-2.1 EWR Concept

In developing a single number EWR rating, two basic principles were employed: (1) restrict the outdoor noise spectrum to a constant shape varying only in level, and (2) approximate the actual transmission curve for a structure in terms of an ideal TL curve which would filter the outdoor spectrum such that the resulting interior spectrum has the inverse shape of the A-weighting curve. Then when the interior spectrum is A-weighted, each one-third octave band would contain equal energy and therefore be equally important in determining the interior A-weighted noise level. This facilitates the prediction of interior A-weighted noise levels and noise reduction.

The problem is conceptualized in Figure B-1. Consider, for the moment, that the exterior noise spectrum exhibits a shape similar to that shown in the figure. As will be discussed, this, in fact, is the nominal average spectrum for the typical source noise. It is desired, then, that the transmission loss characteristic of the wall act as a shaping "filter" to the prescribed exterior noise spectrum so as to produce an interior noise spectrum similar in shape to the inverse of the A-weighted response curve. Interior absorption, having been shown to be independent of frequency," will not affect the shape of the interior noise spectrum.

FIGURE B-1. CONCEPTUAL ILLUSTRATION OF BASIS FOR STANDARD TL CURVE FOR EWR CONCEPT

To identify the precise shape of this standard transmission loss curve, an assumption must be made as to the frequency characteristics of the incident exterior noise. For the initial development of EWR, the characteristics chosen were those of highway traffic noise. Figure B-2 presents the typical range of highway spectra averaged over a 24-hour period for a single location near a heavily travelled freeway. Using these data, the nominal average spectrum for highway noise was calculated, with the results illustrated in Figure B-3. Note that the octave band levels are relative to the overall energy-average A-weighted sound level.

* See Section B-1.

B--5

.

B--6

Knowing the characteristics of the exterior noise spectrum, the shape of the special transmission loss curve shown in Figure B-4 was computed according to the concepts of Figure B-1. Several straight-line approximations to the curve were investigated and the curve shown in Figure B-5 was chosen as the EWR standard contour. This contour can be used in a manner similar to an STC contour to determine the EWR rating for a given wall or construction element based on its TL curve. To do this, the standard contour is adjusted vertically to the highest position relative to the TL curve until, over the frequency range of 125 to 4000 Hz, the sum of the deficiencies in the 16 one-third octave bands (that is, deviations of the TL curve below the contour) is 32 or less. The EWR is then arbitrarily taken as the value of the standard curve level at 500 Hz.

The fact that the actual EWR value is arbitrarily taken as the level of the EWR contour at 500 Hz implies that an EWR value obtained using the above procedures may require final adjustment by a constant to better approximate the reduction in A-weighted noise levels for the structure. Also, EWR values assume an incident noise frequency spectrum similar to that of typical highway noise. Therefore, the spectral shape of the EWR standard contour, and hence actual EWR values, are dependent upon this highway noise spectrum. To use EWR values for predicting building attenuation of aircraft noise, which has a different frequency spectrum, an additional correction will be needed. These adjustments are those labelled "C" in Equation (B-9), and are developed further on in Section B-2.4 of this Appendix.

B-2.2 EWR for Composite Structures

When a structure is composed of several different transmitting elements, the transmission loss of the composite structure must be determined. Standard procedure first entails calculating the composite transmission loss in each one-third octave band. Then a single number rating such as EWR may be determined from this composite transmission loss curve. However, the results of sample calculations* indicate that a composite EWR value may be determined with little error by obtaining the EWR of each structure element and combining these values independently of frequency as shown below in the same fashion as is normally used to compute composite transmission loss:

$$EWR_{composite} = 10 \log_{10} \frac{\sum_{i}^{I} S_{i}}{\sum_{i}^{I} \tau_{i}^{I} S_{i}} , dB \qquad (B-10)$$

where i = Index for the transmitting structure elements;

S. = Surface area of the i'th element;

Tⁱ = The transmission coefficient of the i'th element corresponding to the EWR of that element (EWR;), or:

* See Section B-2.4.

$$r_{i}^{t} = 10$$
 (B-11)

Now if Equations (B-10) and (B-11) are substituted into Equation (B-9), the following general expression may be defined for the EWR of a composite structure to predict noise reduction of A-weighted sound levels:

$$NR = SPL_{o} - SPL_{i} = -10 \log_{10} \sum_{i} S_{i} 10^{-EWR_{i}/10} + 10 \log_{10} A - 6 - C, dB (B-12) - C$$

where C represents the source-critical adjustment constants described in the previous section.

B-2.3 Calculation of the Tabulated EWR Values

The EWR values tabulated for the various construction elements used in this report were calculated using a computer algorithm which simulates the standard EWR contourfitting technique described in Section B-2.1. The transmission loss curves used for the contour-fitting exercise were obtained in one of two ways.

Transmission loss data used for determining wall and roof-ceiling EWR values were calculated using a second computer algorithm based on the transmission loss theory presented in a recent U.S. Department of Housing and Urban Development report.^{B-4} This theory allows calculation of TL values assuming the existence of significant acoustical absorption in studwork walls, in furred walls, and in single-joist roof-ceilings. Since EWR values for building elements without absorption were desired, negative EWR adjustments to account for the effects of the insulation were required. These adjustments were obtained from an extensive literature search for transmission loss values of all types of building exterior constructions. Comparative EWR analyses using numerous TL data for walls and roof-ceilings with and without absorption resulted in absorption corrections of minus 4 dB for studwork walls, minus 3 dB for furred walls and minus 5 dB for single-joist spaces. These corrections were applied to the calculated EWR values yielding the values tabulated at the end of the Appendix.

Transmission loss values used for determining the EWR of windows, doors and air conditioners consisted of published measurement data collected during the literature search. No special adjustments were required before placing the resulting EWR values in the tables.

It should be noted that the EWR values tabulated for walls and roof-ceiling constructions were calculated ideal values which would not be completely achieved by standard construction techniques due to the usual presence of gaps, leaks and flanking paths. The literature search data indicated that the average reduction of these ideal values due to the imperfections of actual standard extension construction is about 4 dB. EWR values tabulated at the end of this Appendix for the other construction elements are based on the measured performance of standard construction. The values given in the EWR adjustment tables, used to adjust the EWR of basic structures to account for the effects of detail modifications, were also obtained from comparative analyses using data from the literature.

B-2.4 EWR Accuracy and Regression Constants

The most important criterion for application of EWR to this study is that it should give better accuracy in calculating the interior A-weighted noise level for a variety of exterior wall structures than any other single number rating scheme. To evaluate the accuracy of EWR for the prediction of structure noise reduction of incident aircraft noise, a large-scale comparison was made between noise reduction based on EWR and a more accurate noise reduction calculated in a classical manner with TL values at each frequency band. That is, the exterior noise level spectrum for aircraft shown in Figure B-6 was applied along with frequency-dependent transmission loss data for many commonly used exterior walls to predict interior spectra. These spectra were then A-weighted to determine an accurate interior A-weighted noise level for each wall type. The EWR of each wall was also determined and applied to the exterior A-weighted level to obtain an estimate of the interior A-weighted noise level according to Equation (B-12). A linear regression analysis was then conducted to determine the correlation between the two resulting interior levels. Note that the absorption term (A) and constants in the noise reduction Equation (B-12) are independent of frequency and would not have any effect on the regression outcome since they would have been applied equally to both noise level calculations. Thus they were not required in the calculations. Combinations of 225 wall constructions and 33 window constructions in area ratios of 0, 10, 15 and 20 percent of total wall area were used for a total of 22,500 separate cases. In each case, interior levels based on composite octave band transmission loss values and on composite EWR values were determined.

The aircraft noise spectrum of Figure B-6 used in this comparison was derived from sound level measurements of commercial aircraft operations. Two noise measurements were utilized — one under the landing path and one under the takeoff path located approximately within the NEF 40 contour at Los Angeles International Airport. Approximately one hour of data was reduced for each site and the energy-equivalent noise level in each octave band was determined. These were time-averaged spectra which were dominated by the noise spectra of the aircraft flyovers. The frequency spectra for takeoff and landing were similar in shape (both decreasing in level with increasing frequency) so they were combined into the single average aircraft noise spectrum shown in Figure B-6.

An initial linear regression analysis was carried out using each pair of interior A-weighted noise levels calculated using (1) the classical method with TL values for each frequency band, and (2) the approximate single number method with EWR. Since the slope of this regression was very close to unity, an additional regression forcing the slope to be unity was performed. A conceptual illustration of this regression is shown in Figure B-7. The correlation coefficient for the unity slope regression is about 0.98 and the 90 percent

.

TL VALUES

FIGURE B-7. CONCEPTUAL ILLUSTRATION OF REGRESSION ANALYSIS RESULTS COMPARING INTERIOR A-WEIGHTED NOISE LEVELS FOR AIRCRAFT COMPUTED WITH THE SINGLE NUMBER EWR METHOD OR WITH THE CLASSICAL TL METHOD AT EACH FREQUENCY BAND. confidence interval (calculated based on the assumption that the overall distribution was gaussian) is less than ± 2 dB. As illustrated, the regression line has an intercept of ± 5.8 dB for this case of aircraft noise as a source so the constant C in Equation (B-12) is -5.8 dB for this source. A similar regression analysis was performed using the highway noise spectrum shown earlier in Figure B-3. Applying the same technique of a forced unity slope, the 90 confidence interval was ± 0.6 dB and the intercept corresponded to a value of -3.5 dB for the constant C.

The only other viable alternate single number rating available is called the Sound Transmission Class (STC).^{B-5} For comparison, the same analyses carried out for EWR were also repeated for STC to determine how accurately this rating method could predict interior A-weighted levels of aircraft noise. The results of this comparison are summarized in Table B-1.

TABLE B-1. COMPARISON OF CORRELATION COEFFICIENTS AND 90 PERCENT CONFIDENCE INTERVALS FOR TWO ALTERNATE SINGLE NUMBER RATING METHODS FOR PREDICTING INTERIOR A-WEIGHTED NOISE LEVELS.

[Aircraft So	urce	Highway Source				
Rating	Regressi	on Line	Unit Slope	Regressi	on Line	Unit Slope		
Tricinica .	r	90% Co	nfidenceLimits	r	90% Confidence Limits			
EWR	0.984	<u>+</u> 1.7	<u>+</u> 1.9	0.998	<u>+</u> 0.6	<u>+</u> 0.6		
STC	0.926	<u>+</u> 3.5	<u>+</u> 3.9	0.962	<u>+</u> 2.7	<u>+</u> 2.8		

The 90 percent confidence limits for the STC method are approximately twice (about ± 4 instead of ± 2) that for the EWR method for an aircraft source. The EWR method should therefore be somewhat more reliable for application to this program. Actual measurements of outdoor-indoor noise reductions for A-weighted noise levels carried out in this program were also shown to agree satisfactorily with predicted values based on the use of EWR (see Appendix G).

In summary, throughout this study Equation (B-12) was used to estimate interior A-weighted noise levels for predictive analyses. The tabular values of EWR and the corresponding adjustment factors are listed in Tables B-2 through B-7.

TABLE B-2a. EXTERIOR WALL RATING (EWR) VALUES FOR EXTERIOR CONSTRUCTIONS*

	INTERIOES	15.	Graumboord	21. Cypsumboord	2 1. Cyes 1/2 Gypsum.	ayers 5/8" Cystume	3/2 Gyp Leth/1/2"PL	1/2. c lath/1/8 "Plan	1/2 " Condisorid Jarer	1/2 "Condboard 1/2	3/1	7/8"	Varier V211 C	4" PLYPSumboard	1/2" PINNOON Pareling	LA Hordinand	paced Solid Woll
EXTERIORS		1	/ 2	3	4	5	6	/7	8	/ •	/ 10	/11	/ 12	7 13	/ 14	/ 15	[
Alum.Siding/1/2" Wood	A	37	35	39	40	41	37	37	38	39	41	42	37	33	39		
7/8" Stucco/Poper	ß	44	44	45	44	40	45	45	45	40	38	37	45	41	46		
7/8 " Stucco/1/2 " Wood	с	45	45	45	45	42	46	46	45	42	40	39	46	42	47		
1/2"Wood Siding	D	33	34	38	40	41	36	36	37	39	41	41	37	31	39		
3/4 " Wood Siding	E	38	37	37	38	39	34	34	35	37	39	39	35	34	37		
4-1/2" Brick Vencer	F	53	52	52	52	48	53	53	52	48	47	46	53	50	54		
9" Brick	G	54	57	59	58		58	58	59	53	53	53	53	53	53	53	
4 " Concrete	11	54	54				55	55	55	49			48	48	48	48	
6 " Concrete	I	54	55	57	56		56	56	57	50	51	51	50	50	50	50	
8 " Concrete	J	56	58	50	59		59	59	60	54	54	55	54	54	54	54	
6 " Hollow Concrete Block	к	46	57	49	49		48	48	48	42	43	43	41	41	41	41	
8" Hollow Concrete Block	L	47	49	51	51		50	50	51	44	45	45	43	43	43	43	
6 " Block w/1/2 " Stucco	м	47	48	50	49		49	49	50	43	44	44	42	42	42	41	
8"Block w/1/2"Stucce	N	48	50	50	51		51	51	52	45	46	46	44	44	44	44	

These values are to be used in conjunction with Equation (B-12) and values for the source constant (C) of -3.5 for highway and -5.8 for aircraft noise sources.

Single-	Joist Sy	/stems	Attic Space Systems					
Roof Material	1/2" Gypsumboard	3/8" Gypsum Lath - 1/8" Plaster	1/2" Fiberboard	Open Exposed Froming		1/2" Gypsumboard	3/8" Gypsum Lath - 1/8" Plaster	1/2" Fiberboard
Wood Shingles	36	36	32	29	Wood Shingles	44	47	56
Composition Shingles	39	42	34	35	Composition Shingles	48	51	61
Clay or Concrete Tiles	47	48	41	40	Clay or Concrete Tiles	53	56	66
Built-Up Roofing	39	39	34	32	Built-Up Roofing	46	49	58
1/2" Wood – Sheet Metal				31	1/2" Wood — Sheet Metal	44	47	57

TABLE B-26. EWR VALUE FOR BASIC ROOF-CEILING STRUCTURES*

* These values are to be used in conjunction with Equation (B-12) and values for the source constant (C) of -3.5 for highway and -5.8 for aircraft noise sources.

TABLE B-3. ADJUSTMENTS TO BASIC EWR VALUES DUE TO MODIFICATIONS

Modification Category 1: Mass Increases	Δ EWR, dB	Modification Category 2: Stud Space Absorption	Δ EWR, dB	Modification Category 3: Limpness Increases	EWR, dB
Double Mass One Side				Fiberboard Under Both Panels	8
	3	Absorption in		Resilient Mounting of One or Both Panels	8
		Stud Space@	4	Staggered Studs	8
Double Mass Both Sides	4		24-inch Stud Spacing		2
				Metal Channel Studs	5

Table Instructions

- ① To obtain the Total EWR adjustment for multiple modifications: add the adjustments for each of the three categories. If more than one Category 3 modification is used, count the value of the largest adjustment plus one-half of the value of the next largest.
- If fiberboard is used for a Category 3 modification, count Category 2 stud space absorption as only 2 dB.
- (3) An additional treatment not related to the three categories is the caulking of all tiny leaks or cracks which usually exist at exterior wall element junctions corners, seams, etc. Sealing all such possible leaks will increase the wall EWR by 4 dB over that of standard unsealed construction. If development plans specify such complete sealing, add 4 dB to the EWR increase determined from the table.

TABLE B-4. EFFECTS OF VENTING ATTIC SPACE CONSTRUCTIONS* ON EWR VALUES WITH AND WITHOUT ABSORPTIONS

Basic Construction	EWR, dB	Vented Attic EWR, dB (Without Insulation)	Vented Attic EWR, dB (With Insulation)
,	40 to 43	28	35
Plaster or Gynboard	44 to 46	29	36
Ceiling	47 to 49	30	37
ig	50 to 52	31	38
Fiberboard Ceiling	52 to 62	39	42

* Based on minimum venting requirements of the Uniform Building Code.

TABLE B-5. ADJUSTMENT TO BASIC ROOF EWR FOR ADDITION OF INSULATION* IN NON-VENTED ATTIC/JOIST SPACES

Description	Adjustment Factor, dB (To be Added)
Single Joist Construction – All Cases	5
Attic Space Constructions -	
Fiberboard Ceiling	2
Plaster or Gyp Ceiling	6

* A minimum of 4 inches is required to count this adjustment.

	DESCRIPTION	EWR, dB
	1/16" glass	28
	1/8" glass	28
Single –	1/4" plate glass	28
Glazed	5/16" glass	32
Windows	3/8" glass	34
	2-ply glass, 0.53" total	42
	3-ply glass, 0.82" total	45
Ja lousie Window	4–1/2" wide, 1/4" thick louvers with 1/2" overlap – cranked shut	22
	1/4" glass, 2" airspace, 3/16" glass	43
	3/8" glass, 2" airspace, 3/16" glass	45
Double -	1/4" glass, 2" airspace, 3/16" glass	44
Glazed	1/8" glass, 2-1/4" airspace, 1/8" glass	36
Windows	1/8" glass, 2-1/4" airspace, 1/4" glass	40
	1/4" glass, 2–1/4" airspace, 1/4" glass	42
	3/32" glass, 4" airspace, 3/32" glass	34
	3/16" glass, 4-3/4" airspace, 1/4" glass	48

TABLE B-6. EWR VALUES FOR COMMON WINDOW ASSEMBLIES*

* These values are to be used in conjunction with Equation (B-12) and values for the source constant (C) of -3.5 for highway and -5.8 for aircraft noise sources.

	DESCRIPTION	EWR, dB
Hollow	1-3/4" wood, 1/16" undercut	20
Core	1–3/4" wood, Weatherstripped	21
Doors	Steel (3.22 lbs/ft ²), Magnetic weatherstrip	32
solid	1–3/4" wood, 1/16" undercut	22
Core	1–3/4" wood, Weatherstripped	30
Doors	1-34" wood, Drop seal threshold	39
	1–3/4" wood, weatherstripped and Aluminium storm door, glazed 1/16" glass	35
Sliding	Glazed 3/16" safety glass, locked	30
Door		

TABLE 8-7. EWR VALUES FOR COMMONLY USED DOORS*

:

* These values are to be used in conjunction with Equation (B-12) and values for the source constant (C) of -3.5 for highway and -5.8 for aircraft noise sources.

REFERENCES - APPENDIX B

- B-1. Sharp, B.H., Davy, B.A., and Mange, G.E., "The Assessment of Noise Attenuation Measures for External Noise", Wyle Research Report WR 76-3, Draft Report for the U.S. Department of Housing and Urban Development, April 1976.
- B-2. Wyle Laboratories, "Home Soundproofing Pilot Project for the Los Angeles Department of Airports — Final Report", Wyle Research Report No. WCR 70-1, March 197
- B-3. Wyle Laboratories, "Community Noise", prepared for the U.S. Environmental Protection Agency, NTID 300.3, December 1971.
- B-4. Sharp, B.H., "A Study of Techniques to Increase the Sound Insulation of Building Elements, Wyle Laboratories Research Report WR 73-5, for the U.S. Department of Housing and Urban Development, June 1973.
- B-5. Standard Classification for Determination of Sound Transmission Class, 1975 Annual Book of ASTM Standards, E-413-73, pp. 761-763, Part 18 (American Society for Testing and Materials, Philadelphia, 1975).

APPENDIX C

BUILDING AND ROOM CONSTRUCTION WORKSHEET

BUILDING AND ROOM CONSTRUCTION WORKSHEET

Α.	Name of Building	·····		•.
в.	Address		· · · · · · · · · · · · · · · · · · ·	
с.	Distance from Airport		NEF	<u></u>
D.	Owner			
	Occupancy Agency			
	Person to Contact	<u></u>	Phone	
Ε.	Use: School O	Hospital O	Other	
F۰	Average Daily Occupan	cy: Staff		
				Day/Night
		Students/Patients		-
G.	Building Size:	Students/Patients	SKETCH:	-
G.	Building Size:	Students/Patients	SKETCH:	-
G.	Building Size: No. of Stories Length	Students/Patients	SKETCH:	-
G.	Building Size: No. of Stories Length Width	Students/Patients	SKETCH:	-
G.	Building Size: No. of Stories Length Width (Sketch layout in space Show North and directi airport.)	Students/Patients	SKETCH:	-

н. Room Size Information:

On the following table, list the nominal dimensions and numbers of rooms adjacent to outside walls. List separately for each type (i.e., use) room. If all similar-use rooms are not the same size, use a separate line for each size. Rooms with dimensions within 20% of each other may be grouped together.

	Room Use and Occupancy	Dimensions*	No. of Rooms
a.			<u></u>
b.		•••••••••••••••••	· · · · · · · · · · · · · · · · · · ·
c.	······································		<u></u>
d,	·		

* Give dimension adjacent to outside wall first.

If a significant number of patient/student rooms are not adjacent to outside walls, give approximate number of building occupants using these interior rooms

0

0

0

0

I. Wall Construction:

- 1. Outside Wall Material
 - O Aluminum Siding 1 Wood 6" Concrete 0
 - 7/8" Stucco/Paper 0
 - 2" Wood Siding 0
 - 3/4" Wood Siding 0
 - 4-2" Brick Veneer 0
 - 0 9" Brick
 - 0 Other

O 6" Block w/2" Stucco

8" Concrete

O 8" Block w/1" Stucco

6" Hollow Concrete Block

8" Hollow Concrete Block

2. Interior Finish Material of Exterior Walls

- O $\frac{1}{2}$ " Gypsumboard
- ナ" Plaster 0 3/4" Plaster
- O 3/8" Gypsumboard
- 7/8" Plaster 0
- O 2 Layers $\frac{1}{2}^{\mu}$ Gypsumboard
- O 2 Layers 5/8" Gypsumboard
- O 3/8" Gyp. Lath/ 1/8" Plaster
- 1/2" Gyp./2" plywood paneling 0
 - O ½" Plywood Paneling

Interior Finish Material of Exterior Walls (Continued) O $\frac{1}{2}$ " Soundboard/ $\frac{1}{2}$ " Gyp. O Exposed Exterior Wall O $\frac{1}{2}$ " Soundboard/3/8" Gyp. O Plywood Paneling O Other _____ 3. Stud Arrangements in Exterior Walls O No studs O 2" x 4" studs, 16" spacing O Other studs. Size Spacing O Staggered studs O Metal channel studs 4. Insulation in Stud Space Туре Thickness 5. Special Features O Resilient mounting of panels O Fiberboard under panels O one side O both sides Double layer panels O continuously glued O spot laminated 0 Roof and Ceiling Construction (If utilization of top story is not similar to other floors, please note difference under "additional comments".) O Single joist construction or O Attic Space Construction 1. **Roof Construction** 2. O Concrete slab. Thickness O Wood. Type Thickness O Metal deck. Thickness Rafter spacing Joist Spacing (if attic space construction) C-3

J.

ورسوم والالار المعروف ورافع والمعروف

 3. Exterior Material O Wood Shingles O Built-up Roofing. No. Plies					-
 Wood Shingles Built-up Roofing. No. Plies Composition Shingles Clay or Concrete Tiles Other 4. Ceiling Material ½" Gypsumboard ½" Fiberboard 3/8" Gyp. Lath/1/8" Plaster Exposed Framing Other Insulation Type Thickness O Unvented Windows* The following information is needed for each room type listed under H. If window differ for similar type rooms, indicate the breakdown. Number of windows per room Window size Thickness of glass If laminated glass, number of plies If double glazed, thickness of air space If alousie, width of slats and overlap when closed The normally open, fraction of window area which is open Do windows open? O or are they non-operable? O Type of frame and seals * Including sliding glass doors.		3.	Exterior Material		
 Composition Shingles Clay or Concrete Tiles Other			O Wood Shingles	0	Built-up Roofing. No. Plies
 O Other			O Composition Shingles	0	Clay or Concrete Tiles
 4. Ceiling Material 3/8" Gypsumboard 3/8" Gyp. Lath/1/8" Plaster Cher Other Insulation Type Thickness If attic space, O Vented or O Unvented Windows* The following information is needed for each room type listed under H. If window differ for similar type rooms, indicate the breakdown. Number of windows per room Window size Thickness of glass If lominated glass, number of plies If double glazed, thickness of air space If jalousie, width of slats and overlap when closed If normally open, fraction of window area which is open Do windows open? O or are they non-operable? O Type of frame and seals * Including sliding glass doors. 			O Other		
 2" Gypsumboard 3/8" Gyp. Lath/1/8" Plaster Cher Other Insulation Type Thickness If attic space, O Vented or O Unvented Windows* The following information is needed for each room type listed under H. If window differ for similar type rooms, indicate the breakdown. Number of windows per room Window size Thickness of glass If laminated glass, number of plies If double glazed, thickness of air space If jalousie, width of slats and overlap when closed If normally open, fraction of window area which is open Do windows open? O or are they non-operable? O Type of frame and seals * Including sliding glass doors. 		4.	Ceiling Material		
 3/8" Gyp. Lath/1/8" Plaster O Exposed Framing O Other			O ½" Gypsumboard	0	1 ² " Fiberboard
 O Other			O 3/8" Gyp. Lath/ 1/8" Plaster	0	Exposed Framing
 5. Insulation Type			O Other		
Type Thickness 6. If attic space, O Vented or O Unvented Windows* The following information is needed for each room type listed under H. If window differ for similar type rooms, indicate the breakdown. 1. Number of windows per room 2. Window size 3. Thickness of glass 4. If laminated glass, number of plies 5. If double glazed, thickness of air space 6. If jalousie, width of slats 7. If normally open, fraction of window area which is open 8. Do windows open? O or are they non-operable? O 9. Type of frame and seals * Including sliding glass doors.	:	5.	Insulation		
 6. If attic space, O Vented or O Unvented Windows* The following information is needed for each room type listed under H. If window differ for similar type rooms, indicate the breakdown. 1. Number of windows per room			Туре	Thie	ckness
 Windows* The following information is needed for each room type listed under H. If window differ for similar type rooms, indicate the breakdown. Number of windows per room	(6.	If attic space, O Vented or	οι	Invented
 3. Thickness of glass 4. If laminated glass, number of plies 5. If double glazed, thickness of air space 6. If jalousie, width of slats and overlap when closed 7. If normally open, fraction of window area which is open 8. Do windows open? O or are they non-operable? O 9. Type of frame and seals * Including sliding glass doors. 	1 2	diffe 1. 2.	er for similar type rooms, indicate th Number of windows per room Window size	e bre	akdown.
 4. If laminated glass, number of plies	3	3.	Thickness of glass		
 5. If double glazed, thickness of air space 6. If jalousie, width of stats and overlap when closed 7. If normally open, fraction of window area which is open 8. Do windows open? O or are they non-operable? O 9. Type of frame and seals * Including sliding glass doors. 	4	4.	If laminated glass, number of plies		
 6. If jalousie, width of stats and overlap when closed 7. If normally open, fraction of window area which is open 8. Do windows open? O or are they non-operable? O 9. Type of frame and seals * Including sliding glass doors. 	5	5.	If double glazed, thickness of air sp	ace _	
 7. If normally open, fraction of window area which is open 8. Do windows open? O or are they non-operable? O 9. Type of frame and seals	6	5.	If jalousie, width of slats	and	d overlap when closed
 8. Do windows open? O or are they non-operable? O 9. Type of frame and seals	7	7.	If normally open, fraction of window	w area	which is open
 9. Type of frame and seals	8				
* Including sliding glass doors.		3.	Do windows open? O or are the	y non	-operable? O
	9	3. 9.	Do windows open? O or are the Type of frame and seals	y non	-operable? O

C-4

•	Ext	erior Doors*											
	0	Solid Wood											
	0	Hollow Core	0	Wood	0	Steel							
		Type of seal:	0	Gap at b	ottom								
			0	Weather	stripp	ed							
			0	Other typ	e sea	l							
	0	Storm door also											
	* (9	Only if a substant class doors to be v	ial n vindo	umber of r ows.	ooms	have exterior doors. Consider sliding							
•	Ventilation System												
	O Windows only O Central forced air												
	0	Through-the-wa	ll air	condition	ers								
		Number per roor	n										
		Dimensions of op	enin	9									
•	Room Interior*												
	The following is needed for each room type listed under H.												
	1. Percent of floor carpeted												
	2. Percent of wall covered with heavy drapes												
	3. Acoustical tile on ceiling? O Yes O No												
	4. Number of doors leading to interior rooms or hallways												
	(Describe unusually large doors below,)												
		(Describe unusually large doors below,) * Please provide breakdown if not typical for all.											
	* P	lease provide brea	akdo	wn if not t	ypica	l for all.							
	* Pi Addi	lease provide breating	akdo	wn lf not t	ypica	I for all.							

C-5

epared by	 	 Date	

• • • •

T

O Supplemental sheets attached

APPENDIX D

COMPILATION OF BUILDING INVESTIGATIONS

÷,-

TAB	LE	D-1	
-----	----	-----	--

and the

endheiden felde se

				Miles					Airport Los /	ngeles I	interr	ntional City	L٨	XStat	e <u>Ca</u> l	lifornia
				from	Year	(Construction Mater	rials		Windo	ws		No.	of Do) ma 🕯	• Student/
N	ume of Building	Location	NEF	Airpor	Built	Exterior	Interior	Roof	Ceiling	Size	No.	Ventilation	Floo	rs Size	No,	Patient No
1.	Imperial Sch.	540 Imperial Ave,	30	0, 5	1953	9'Brick	l/2'' Gypsum l/2'' Plywood	Wood	l/2''Fiberboard Acoustic Tile	3'5''x 4'10''	60/.6 Ext, Wall	Central Forced Air	1	900 ^{,2}	14	60
2.	Clyde Woodworth Sci	13200 W 104th Str.	30	2, 3	1954	l'Wood and Stucco	1/2''Cypsum	l''Wood 6 Ply + Slag	Acoustic Tile	3.5% 8'	6	Windows Only	1	34'x28'	32	1,035
3.	Lennox High Sch.	11033 Buford Ave.	30	0, 1	1057	6'Concrete an Slucco	d 1/2'' Gypsum- board	i"Wood 6 Ply + Siag	Acoustic Tile	42"x (60''	50%	Windows Only	1	3l'x28'	30	1,229
4.	Felton Avenue Sch.	1041 Felton Ave.	30	0. 2	1950	l''Wood Siding + Slucco	1/2'''Gypsum 1/2'' Plaster 1/2'' Plywood	l'Wood Planks	1/2''Асмаtic Tile	3'x9'	6	Windows Only	1	30'x30'	20	700
5,	Figueroa Street Sch.	510 W 111th Str.	30 Out	4.8	1950	0'Brick + Stucco	3/4"Plaster + 1/2"Seratch Wood Lath	l''Wood Planks, Ply +Sh	Plaster 6 45	3'x8'	5 1	Windows Only	2	30'x30'	12	
ALT	98th Street Sch.	5431 W 93th Str.	30	0, 2	1958	3/4 Wood Siding + Stucco	1/2" Gyp s um	Planks, Planks, Ply + Sl	1/2''Acoustic 6 'File ag	3'x8'	5 \ (//Indows Only	1	30'x30'	14	
6.	Westchester High Sch	7400 W. Manchester	30	0, 5	1958	8"Reinforced Concrete	l/2°Gypsum ↓⁄2'' Plaster	6"Coner	ete	3'x8'	۱ د	Vindows Only	1	30'x25'	58	2,500
7.	Imperial Hospital	11222 Inglewood Ave.	30	0.5		8'Concrete 8'Brick	l/2''Gypsum l/2''Plaster	6"Conei	ete	6'x6'	V C	Vindows Only	2	16'x12'	92	92
8.	Inglewood Hospital	426 E 99th Str.	30	1,0 E	lefore 1958	3/4 Wood + Stucco	l/2''Gypsum l/2'' Plaster	l"Wood GPIy S	Plank, Slag	8'x8'	V I	Vindow + Forced Air	I	14'x18'	28	28
ALT.	Lawndule High Sch.	14901 Inglewood Ave.	30 out	2,4		8" Concrete 8" Hollow Concrete Block	Painted Concrete Block	6" Slab Reinford	ed	3'x6'	V C	Yindows July	2	25'	50	2,000
9.	Morningside Sch		37	2.0		0" Brick	Տ/8 Gyրsum	Wood	u	1/2 Gy 1]/4 x	/psun 31711	i Windows Only	1.2	1" x 28t	72	177.3
10.	Centinela Hospital		30	1,8		8" Concrete	1/2 plaster	Concret	e Slab	3'7" x 4	işii	Windows Only	8 1	5' xโบ่'	200	570

SUMMARY OF BUILDING INVESTIGATION

*Include patient beds.

2. C

.

TABLE D-2

مدفعهم بالمدر

يادين وربعات الموقية ملتر ماتر المح

и.

D-2

SUMMARY OF BUILDING INVESTIGATION

 $\frac{1}{2} = \frac{1}{2} \frac{g_{\rm eff}^2}{2} + \frac{1}{2} \frac{g_{\rm eff$

								mannion	Airport <u>Sta</u>	pleton		City_Denve	r_f	State_Co	lora	<u>lo</u>
N	ame of Building	Location	NEF	Miles from <u>Airport</u>	Year Built	Exterior	Interior	Roof	Ceiling	Size	<u>No,</u>	Ventilation	No. o Floor	of rs <u>Size</u>	<u>No.</u>	Student/ Patient No.
1,	Clyde Miller Elem. Sch.	2300 Tower Rd Aurora			1953	8''Concrete Block w/ Brick Ext.	Exposed Ext. Wall Painted	l'Wood Sheathin Shingles	Hard Plaster g	4'x 7'	7		1	30'x 20'	5	125
2,	Denver General Hosp.	West 8th & Cherokee	out 30	6,0	1067	5''Precast Concrete, 2'' rigid firm insulation '2'' Gypsunboard	l∕2''Gypsum	3" Con- crete Sia	¹ /2"Gypsuni- b board	6'x variou	5 5	Central Forced Air	8	26'x 21'	100	350
3.	Parklane School	13001 E, 30 Ave. Aurora	30	1, 2	1954	4''Brick on 8'' Concrete Block	Exposed Ext. Wall	Metal Deck	34''Acoustic Plaster on Metal Lath	4'x 6'8''	6	Unit Venti- tor s	1	27'5''x 31'	23	495
4.	Sable School	260l Sable Blvd	30	2,0	1962	9'' Brick - 4'' Brick w/ 8'' Block	Exposed Con- crete Block	Acousti e Plaster				Windows Only	1	22'0''X 19'6''	26	840
5.	Montview School	2055 Moline		0.6	1951	7/8''Stucco/ Paper and 4'' Brick w/ 8'' Block Backup	3 _{/4''} Plaater	3 _{/4} '' Wood	Acoustic Plaster on Metal Lath	3'10''X 2'9''	10	2 through the wall air- conditioners per room	1	30'x 22'	23	250
G , 1	North Junior High Sch.	12095 Montview Blvd.	30	0, 8	1957	12" Masonry Wall w/ Brick Exterior	Structural Glazed Tile	2"Gypsum Deck on 1" Forniboard on Steel Joists	Acoustic Plaster on Suspended Metal Lath	4' x 2'	5	Windows & Unit Vent		30'x 24'	25	1,000
7.	Elyria Sch.	4725 High Str.	out 30	3, 7		13"Masonry Wall w/ Brick Exterior	3⁄4'' Plaster	l'Wood Sheathing	34" Plaster on Metal Lath w/ Applie	3'8''x 7' d	5	Windows& Unit Vent Heaters	1	30'x 22'2''	4	78

1	lame of Building	Location	NEF	Miles from Airport	Year Built	Cons Exterior	iruction Materia Interior	ls Roof	Celling	<u>Windo</u> Size	ws No.	Ventilation	No, ol Floor:	Roc Size	nn i No.	Student/ Patlent No.
8). Smiley Jr. High Sch.	2540 Holly North Hill Park	30	1.2	1928	l'8'Walls Terra Cotta Exterior Keene Cement & Plaster	t Keene Cement Plaster t	2 ¹ /2" Concrete Slab	Acoustic Plaster	9'x 5'	5	Window and Unit Venti- lation	3	34'8" x 32'	45	1,425
9	, Paris Sch.	1635 Paris Str.	30	1. 1	1956	12"Wall-Face Brick Exterior and Interior	Face Brick	Skylight	Accustic Plaster	3'9 ³ ⁄4'' x 7'8''	7	Windows & Unit Venti- lators	1	31'4'' x 32'	8	270
10	. Fitzsimons Army Hosp.	Peoria & Montview Bivi.	30	0,4	N. A.	13" Face Brick	³ ⁄4" Plaster	3"Con'- crete Slab	Hard Plaster	2'8''x 5'5''	I	Windows	4	8'6''x 14'6''	610	937
ľ	l. Haliett Sch.	2950 Jasmine	30	l. I		l'Concrete Block	Cancrele Block	2 ¹ /2" Concrete Slab	Accustic Tile Applied to Concrete Stab(ist Floor) or to Suspende Plaster Ceilin (2nd Floor)	6'9'' x 4'8'' d d g	8	Windows 8"x51" Unit Vent	2	32'x 24'	26	500
12	Boston Sch.	1365 Boston Str.	30	1, İ		12"Wall-4" Face Brick Interior and Ex- terior	1/2" Plaster Face Brick	Skylight	Acoustic Plaster	3'9¾'' x 7'8''		Windows & Inlet Vents	1	31'4''x 12'		150

TABLE D-2 (Cont'd.)

0-3

TABLE D-3

SUMMARY OF BUILDING INVESTIGATION

A1.

.

والمراجع والمراجع والمراجع والمراجع والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمراجع والمعاد والمراجع

				Miles					rat por c	3mj 1444			CIUX		<u>- /u</u>	120154
				from	Year	Cons	truction Materia	สร		Windo	ws		No. e	f Roo	m	Shudent/
N	ame of Building	Location	NEF	Airport	Built	Exterior	Interior	Roof	Celling	Size	No.	Ventilation	Floor	s Size	No,	Patient No.
1,	Grant Elem, Sch.	720 S 4th Str.	30	2, 8	1929	Brick	3/4" Plaster	Aspluit Shingles	Metal Lath Plaster	3'10''x 7'3 ⁷ /8'	5	Central Forced Air	1	31'x25'	22	442
2.	Adeline Gray Sch.	201 E. Durango	30	2.3	1950	l2''Brick	3/4" Plaster	l'Wood Sheath- Ing	Acoustic Tile	7'5''x 3'8''	6	Windows Only	1	32'x24'	7	20 1
3.	Lincoln Ab. Elem. Sch.	1021 E. Buckeye Rd.	30	2.0	1946	9''Brick	5/8" Plaster on Brick	l'Wood Sheath- ing,Shing	3/4"Plaster on Metal Lath des acoustics tile	3'8 ⁷ 8" x 2'l" d	r	Windows Only	I	24'x37'	12	300
4,	Dunbar Elementary Sch.	701 S. 9th Ave.	30	3.0	1925	l'3" Brick	3/4" Plaster	7/8''Wood Sheathing	3/4"Plaster on Metal Lat	3'9''x h 7'2''		Windows Only	1	31'5"x 24'6 ¹ /2"	17	425
5 ,	Herrera Silvestre Elem. Sch.	1450 S. 11th Str.	30	2.0	1956	4"Brick w/ Concrete Block	Exposed Ext. Wall	Comp, , Shingles	Acoustic Tile Applied To Plaster	8'2''x 0'5 ^l /2''	5	Central Forced Air	1	20'8''x 32'	8	120
8.	Ann Ott Sch.	12th Str. & Apache Str.	30	1, 75	1946	Plaster on Brick		Wood / Sheathing	Accustic 'The	4'x8'1''	6		1	30'x24'	21	588
7.	Skilf Elem. Sch.	1430 S. 16th Str.	30	0, 8	1958	12'' Concrete Block	5/8" Plaster	l''Wood / Sheathing	Accustic Tile	3'8 ^{'/} 8'' x 6'9''	7	Forced Central Air Evaporative Air	2	35'3''x : 25'	35	800
8,	Wilson Hawkins Elem. Sch.	2411 E. Buckeye Rd.	30		1958	Brick	5/8" Plaster	l'Wood / Sheathing	Acoustic Tile	6'9''x 3'87/8''	7	Forced Central Air Evap, Cooler	2 8	35'3" x 25'	21	1,000
9.	Arizona St. Hosp.	2500 E. Van Buren	30	3, 1	1970	i0" Brick Reinforced	Exposed Ext. Wall	10''Pre- Cast Slab		5'' x 8'	2	Central Forced Air	1)'6''x 3'4''	72	662
10.	Children Hosp.	200 N. Cury	30	3.1	1962	4"Brick Con, Block Cement Grout	5/8" Plaster	3''Con- 1 crete Slab	Plaster	4'x 5'53⁄4''	2	Central Forced Air	3 	2'x 5'10 ³ /4''	70	150

E A shathows 1 p. pr. sys

. F. . . .

and franking an interstation of the second state of the second state of the second state of the second second s

D

TABLE D-4

SUMMARY OF BUILDING INVESTIGATION

		+			Miles					wrbort_	ப்து	<u>n</u>	City_E	юно	<u>1Stal</u>	o Ma	sachusetts
					from	Year	Co	natruction Materi	ials		Window	Vß		No	or Bioni	m	Chudmet /
	Na	me of Building	Location	NEF	Airport	Built	Exterior	Interior	Roof (Ceiling	Size	No.	Ventilation	Floo	rs Sizo	No.	Patient No.
	1.	Winthrop Comm. Hosp.	44 Lincoln Str. Winthrop	30	0.4	1930	9'Brick	1/2" Gypsum	6''Can- 1 croteSlab	/2"Gypsum- board	35''x 71''	2	Windows Only	3	11'10''x 20'2''	54	235
	2.	Winihrop Jr. High Sch.	44 Lincoln Str. Winthrop	30	0, 5	1968	9"Brick, 9" Concrete Block	Exposed Con- crote Block	6" Con- 1 crete Slab	/2"Gypsum- board	8'5''x 4'	2	Windows, Heat Vent System	2	31'1'' ' x 23'0''	45	919
2	3.	Julia Ward Howe Sch.	Crescent Ave, Rovere	30	1, 3	1890	¥4" Wood Siding	36" Gypsum Lath, 1/8" Plaster	3/4"Wood Shingles	3/8 Gypsum Lath, 1/8" Plaster	40"x 8"	6	Windows Only	2	28'x30'	10	210
	4.	Garfield Jr. 11igh Sch.	Revere	30	1, 7	1927	i4"Brick Wood Laih & Plaster	3/8" Gypsum Lath W/ 1/8" Plaster	l'Wood 3 Plank L P	/0"Gypeum .ath, 1/8" Inster	40'x 94''	6	Windowa Omly	3	24'5''x 30'	27	400
	5.	Choverus Sch.	10 Moore St. E. Boston	30	0,6	1908	18"Brick & Concrete Column	3/8"Gypsum& Wood Lath w/ Plaster	6'Con - E crete c Slab, 6 P Ply+Slag	bposed Con- rete, Ceiling ainted	45'x 8'8''	4	Windowa Only	3	22'8''	18	315
	0.	Chapman Sch	61 Eataw E. Boston	30	1.0	1900	l6''Brick & 3/4'' Plaster	3/8"Gypsum Lath 1/8" Plas- ter on Back Bearing Wall	16''Block 3 w/ 3/4'' - 1 Plaster +	1/1" Wood Plank-6 Plys - - Slag	8'8'' x 4'0''	7	Windows Only	3	27'3''x 31'6''	18	120
	7.	Chelsea Mem, Hosp,	Chelsea	30	1,3 1	1900	8"Brick & 4" Block w/ rein- forced Oxercto Frame	Painted Coment Block	6" Con- 1/ crete Siab 6 Ply+ Slag	2" Gypsum & Acoustic The	27''x 18''	2 1	Windowa Only	3	11'8''x 16'	28	75
	8. 1	Williams Sch.	511 & Arlington Str. Chelsen	30 1	1,6 1	909	16'' Brick w/ Plaster & Wood Lath	3/8" Gypsum Lath & 1/8" Plaster	3/4" Wood Plank 6 Dive Sing	3/8"G ypsum Lath & 1/8" Disstor	52"x ·	4	Windows Only	3	32'9''x ' 27'3''	75 1	,400

A Sector States and

. . . .
N	ame of Building	Location	NEF	from Airport	Year Built	Cons Exterior	truction Materials	<u>Roof</u>	Ceiling	Wind Size	ows No.	Ventilation	No. Floo	of <u>Room</u> rs Size No.	Student/ Patient No.
9.	Edward School	Main Street Churlestown	out 30	2.5	1931	l2'' Brick & Plaster Coat	3⁄4" Plaster on 12" Brick Wall	3/4" 3 Wood I Sheathing 6 Ply+Slat	8/8" Gypsum Lath & 1/8" Plaster S	54"x 108"	4	Windows Only	3	22'6''x 20 20'8''	530
10.	Barnes Elem. Sch.	127 Marion Str. E. Doston	30	1.0	1898	18''Brick	3/4" Plaster + 1/8" Finish	l''Wood Plank, 0 Plyn3lag		62" 'x 52"	3	Windows Only	3	27'8'' x 52 33'3''	796
11.	Shurtleff Sch.	Central Ave. & Shurtleff Str. Chelsea	30	1. 3	1911	9''Brick	3/8"Gypsum Laih & 1/8" Plaster	6"Concret Slab 6 Ply + Slag	a V		1		3	28'x30'	1,600
12.	Lawrence Mem. Hosp.	193 and Governors Ave.	out 30	5, 8	1922- 1976	9''Brick & Plaster Walls	3/8" Gypsum Lath & 1/8" Plaster	6'' Concre Slab 6 Pij + Slag	te 3/8" Gyp y sum Lail & 1/8" Plaster	⊢ 6'x 3 8'	t	Windows Forced Air Cool Water	1-6	14'x16' 100	200

رم الأحديات ا

e des

and search to have against

1. 1. se

TABLE D-4 (Cont'd.)

SUMMARY OF BUILDING INVESTIGATION

-

 City Mr.

Etonida

A1.

									and we have	terne intera	T PART					or test
				Miles from Ye	ur	Cons	struction Material	8		Window	<u>v</u>	:	No. c	n Roc	m	Student/
	Name of Building	Location	NEF	Airport Bui	<u>It</u> Ex	terior	Interior	<u>Roof</u>	Celling	Size	<u>No.</u>	Ventilation	Floor	s Size	No.	Patlent
	1. Dunbar Elementary School	605 N.W. 20th Str.	30	4.0	8'1 1/2	Block with "Stucco	Concrete Block and Stucco	6" Concrete Slab	t/2"Acous- e tic Ceiling	2'x7' 5	12	Central Forced Air	2	28'x35'	34	628
	2. Jackson Memorial Hospital	1611 N. W. 12th Ave.	30	3, 5	8'C Blo	Concrete ock	1/2"Plaster wire mesh 6" Hollow Block	6''Con- crete Slab	1/2"Acous- tic Tile	2'x5'	2	Windows Central Forced Air	14	12'x22'	735	1, 250
	3. Pan American Hosp.	5959N, W. 7thStreet	30	0.6	8''I Coi Bio	Hollow nerete and ock +Stucco	1/2"Plaster on Concrete Blocks	6"Con- crete Slab	1/2" Acous- tic Tile	21/2' x 5'	3	Windows- Through-the Wall Air Con C. F. A. Units	2 đ.	12'x16'	86	118
	4. Citrus Grove Elem, Sch.	2121 N. W. 5th Str.	30	2. 8	8''E 1/2' Bri	Block and 'Slucco ick Veneer	1/2"Acoustic The on Blocks	4'Con- crete Slab 6 Ply+	1/2"Acous- tic Tile	3'x5'	14	Windows Only	1	32'x45'		990
1	5. Wheatley Elem. Sch.	1801 N. W. I Place	30	4.4	8'T Stu Vei	Block + ¹ /2" .cco Brick heer	Painted Block	6'Con- crete Slab, 6 Ply + Sla	↓⁄2" Accus- tic Tile ੴ	2 ¹ /2' x 7'	7	Windows Only	}-2	28'x30	' 34	55 1
	 Booker T. Washing- ton School 	1200 N.W. 6th Str.	30	4. 2	8''l cre Stu	Iollow Con- te Block + cco	V2"Plaster	6'Con- crete Slab, 6 Ply +Slau	l/2"Acous- tic Tile	3'x7'	Ц	Windows Only	3	25'x45'	54	862
	7. Auburnchie Elemen- tary School	3255 S. W. Olh Str.	30	2. 1 1940	8"2 1⁄2" 8"'/	llock with Slucco Adobs Brick	^l /2"Plaster	l'Wood Plank 8Ply+Sla	½"Acous- tic Tile g	3 ¹ ⁄2'x 8'	6	Windows Only, Some Window Air- Conditioners	2	28'x30'	60	776

TABLE D-5 (Cont'd)

....

5-0

<u>Na r</u>	te of Building	Location	NEF	from Airport	Year Built	Constr Exterior	uction Materials Interior	Roof	Celling	Window Size	s No,	Ventilation	No, of Floors	Roon Size	n l No. 1	Student/ Patient
8.	Kensington Elem, School	711 N. W. 30th Str.	30	2. 0	1950	8'Block with ∲2'' Stucco	Painted Block	6"Con- crete Slab	l/2"Acous- lic Tile	3Џ⁄2''x 7''	7	Central Forced Air	I	26'x30'	43	080
9.	Buena Vista Elem, School	3001 N.W. 2nd Ave,	30	4, 3		8'Block and 1⁄2'' Stucco	¹ /2" Plaster	6''Con- crete Slab, 6 Ply +Sla	3%''Gyp. Lath and 1%''Plaster g	4'x8'	5	Windows Only	2	25'x30'	22	349
10.	Robert Lee Jr. 11igh School	3100 N. W. 5th Ave.	30	4,0	1924	8"Block and V_2 "Stucco	Painted Blockq	6"Con- crete Slab, 6 Ply +Sla	Exposed Concrete Beun	4'x8'	5	Window and Window Air- Conditioner	3	26'x30'	30	825

e tran

									Alrport	Wm. Hartsliel	<u>l City_Atlant</u>	<u>a s</u>	talo <u>Geor</u>	da
			•		from	Year	Co	structionMaterial	ls	Windows	·	No. of	Room	Student/
	<u>Na</u>	nie of Building	Location	NEF	Airport	Built	Exterior	Interior	Roof Celling	<u>Size No</u>	Ventilation	Floors	Size No	Patient
	i .	Newton EstatesSch.	3950 Northwest Dr. College Park	30	1, 2	1052	4'Brick 8'Concrete Block	Concrete Block	7 ¹ /2" Accustic Concrete Tile Slab	10'9''x 3 8'1''	Windowa Ouly	2	36x25 6	192
	2.	Langino School	2001 Walker Ave, Collego Park	30	1. 3	1952	4'Brick on Concrete Block	Concrete Block	2º Con- Acousti crete Slab Tile	e 5'x6' 6	Windows Only	2	36'x23 13	259
	3.	Lake Shore High School	2134 Lake Shore Ave. College Park	30	2. 5	1965	4''Brick 8''Block	Painted Concrete Block	2 ^{1/2} "Con- Acousti crete Slab Tile	c 14'4''x 2 7'1''	Windows Only	2	30'x22 45	927
	4.	Eastern School	Campbell Road	30	2.8	1957	4'' Brick 8''Concrete Block	Exposed Con- crete Block	2'Concrete Acous Slab Tile	tic 8'0''x 3 8'	Windows Only	2	36 'x 8 23''	214
ŗ	5.	College Park High School	3605 Maine Coll <i>e</i> ge Park	30	0.9	1940	10'Concrete	1⁄2" Plaster	2"Con- Metal Li crote Slab 3/4" I 2"Insulation ter	ath 11'4'x 'las- 8'634''	Windows Only	2	22'x 25 30'	477
7	6.	Woodward Academy	ll30 Symulcing Drive, N. E. , Atlania	30	0.7		8''Brick 4'' Concrete Block	1/2"Plaster	6'Slab 6 ¹ /2''Plas Ply + Slag	ter 6'x5' - 3 & 3'x5'	Windows Only	3	16'x 26 46'	1,650
0	7.	Fountain School	2071 Boulevard Dr. Atlanta	30	2.9		8'Drick	6''Concrete Block Plus Painted Walls	6"Concrete 1/2" Slab, 6 Ply Acous + Slag Tile	4'x5' 6 stic	Windows Only	1 ;	26'x 16 30'	406
	8,	Crawford Long Sch	3200 Lafona Dr. , S. W.	30	1.7		8''Brick	6''Hollow Con- crete Block + Paint	6'Concrete 1/2"/ Slab 'I	\coustie 3'9" 1 "ile X6') Windows Only	2	28'x 42 36'	025
	9,	George High Sch	800 Hutchense Rd.	30	3.0	1972	8'Brick	0'Hallow Block Wall and Paint	8'Concrete ↓2"A Stab 6 Plys + tic Slag	cous- 6'5''x 8 Thie 4'	Central Forced Air	3 1	140'x 20	1,046

· · · 11.1

Sec. 21.02.1

And the state of the second

SUMMARY OF BUILDING INVESTIGATION

TABLE D-6 (Cont'd.)

Name of Building	Location	NEF	from Airport	Year <u>Built</u>	Constru Exterior	ction Materials Interior	Roof	Cetling	Wind Size	ows No.	Ventilation	No. (Floo:	of <u>Roo</u> rs <u>Size</u>	nı No.	Student/ Patient
 Samuel R. Young School 	710 Temple Avance College Park	30	0, 3	1952	4"Brick and Concrete Block	Exposed Concrete Block	2''Gyp- sum deck 5 Ply	Acoustic Tite	8'1''X 4'	2	Windows <i>O</i> nly	1	31' 0''x 24'10¦⁄4''	, 22	363
11. St. John School	240 Arnold Street Hapeville, Georgia	30	3.4		8'Brick	6"Hollow Con- crete Block	6"Slab	1/2" Accustic	4'x6'	8	Windows - Only	I	24'x36'	10	

D-10

2.4-

and the states of the

256-61

fits and in the

 $Q_{\rm eff} = 1 + 1 + 1$

and the state of the second
影

Summary of Numbers and Sizes Average No. of Rooms Average Room Size Average No. of Windows Average Window Size AIL 4'4¹/2"x6'4" (27.86ft²) 32'9"x29'2" (955,02ft²) Schools 23.56 5.38 All 12'5"x17'10¹/2" (222.5ft²) Hospitals 179.7 2'11"x5'4" (15.51ft2) 1.98

OVERALL ROOMS AND WINDOWS

ويريدن العام

. ..

 $k q^{*}$

HOSPITAL WINDOWS AND ROOMS

	Summa	ry of Numbe r s and S	îzes	
City	Room Number	Room Size	Window Numb er	Window Size
Atlanta (E)				
Mîamî (C)	411.5	12' x 21'4"	2.43	2'l" x 5'
Phoenix (B)	71	10'9" x 14'6"	2.21	4'5" x 6'8"
Boston (D)	60.6	13' x 17'3"	1.45	3'll" x 6'32"
Denver (F)	355	12'8" x 15'5"	1.56	3'9" x 5'5"
Los Angeles (A)	60	15'6" x 13'5"		

.....

SCHOOL ROOMS AND WINDOWS

	Summary	of Numbers and Sizes		
City	Room Number	Room Size	Window Number	Window Size
Atlanta (E)	22	40'3" x 30'2"	4.8	5'8" x 5'6"
Miami (C)	39.5	32'8" × 33'6"	7.8	3' x 7'3"
Phoenix (B)	7.8	31'9" x 26'2"	4.9	4' " x 6'3"
Boston (D)	30.8	29' x 28'1"	3.9	5'2" x 6'10"
Denver (F)	11.7	28'll" × 24'5"	9.8	5'2" x 4'3⁄2"
Los Angeles (A)	23.25	30'll'' x 27'8"	2.3	3'3" x 8'

D-13

APPENDIX E

CALCULATED NOISE REDUCTIONS

			S • 10	-EWR/10	(ft ²)]		_
Building	Room	Windows	Doors	Walls	Roof	A (sabins)	NR (dB)	
Imperial School	2, 11	.1846	.0317	.0036	.0014	1250	26	
	6		.0317	.0108	.0014	1000	32	
Lennox H.S.	4Bldg3, 3Bldg6, 3 Bldg 4	. 167	.126	.0043	.0014	630	21	
Felton Ave. School	9, 5, 11	.428	.013	.020	.0451	630	19	ĺ
Clyde Woodworth School	4	.3772	.1912	.0826	.0015	630	18	
Morningside H.S.	J2	.3675	.1207	.004	กป	500	18	
v	V2	. 1647	. 1207	.004	nil	500	20	
Centinella Hosp.	5114, 8128	.0225		nīl		125	26	
Westchester H.S.	F9	.3899		.0024	.0075	500	19	
Imperial Hospital	227, 224	.036		.0003		140	24	
Figueroa St. School	Classroom	. 1902		.001	.0113	500	22	
Lawndale H.S.	Lower Story	.114	.110	nil		630	23	
	Upper Story	.224		nil	.009	630	23	

TABLE E-1. CALCULATED NOISE REDUCTIONS - LAX

			S • 10	-EWR/10	(ft ²)]	
Building	Room	Windows	Doors	Walls	Roof	A (sabins)	NR (dB)
Grant Elem , School	Classroom	.2219		.0012	.0616	800	22
Adeline Gray School	. 6	.2615	.0798	.0005	.0122	800	22
Lincoln Elem.School	Classroom	.2853	.0798	.0043	. 3535	1000	20
Skiff Elem. School	2nd Floor Classroom	.2853	.1262	.0126	.0220	800	21
Wilson Hawkins Eiem. School	2nd Floor Classroom	.2853	.1262	.0020	.0220	800	21
Dunbar Elem. School	Classroom	.2140		.0019	.0613	630	22
Silvestre Herrera Elem, School	2	.2457		.0017	.4330	800	19
Ann Ott (Stevenson) School	Classroom	.3075	.0798	.0010	.0361	630	20
Arizona State Hosp.	Patient Room	.0106	.1262	.0005	nil	125	18
Arizona Children's Hospital	Patient Room	.0998	nil	,0003	.0001	125	19

TABLE E-2. CALCULATED NOISE REDUCTIONS - PHX

								_		
				5 • 10	-EWR/10	(ft ²)]		
Building	Room	Windows	Doors	Walls	Roof	A/C Units	Vents	A (sabins)	NR (dB)	
Dunbar Elem.School	Classroom	.0168	.0200	.0204	6100.			800	29	
Jackson Memorial Hospital	Patient Room	.0317		.0005	.0026			250	27	
Citrus Grove Elem. School	Classroom	1.325	.2524	.0262	.0321			1600	18	
Wheatly Elem,School	Classroom	. 1981	.1262	.0036	.0084			800	22	Ì
Booker T. Washington School	3rd Story Classroom	.3661		.0070	.0113			800	21	
Pan American Hosp.	Patient Room	.0594		.0025	.0019	.0190		200	22	Į
Auburndale Elem. School	Classroom	, 2663	.2524	.0022	.3344	.0190	2.389	630	11	
Kensington Elem. School	Classroom	.2718	.0200	.0171	.0078		3.344	630	11	
Buena Vista Elem. School	Classroom	.2536		.0044	.0008			630	22	
Robert E. Lee JHS	Top Story Classroom	.2536	.0252	.0056	.0078	.0285	.0107	630	21	

TABLE E-3. CALCULATED NOISE REDUCTIONS - MIA

• • • •			s	• 10 ^{-EW}	R/10 (ft ²)		÷	
Building	Room	Windows	Doors	Walls	Roof	Skylight	A (sabins)	NR (dB)]
Winthrop Community	319	.1712		.0012			430	22]
Hospital	271	.0250		.0012			250	28	
Winthrop JHS	206	.0457		.0014	nti		500	28	
i	220	.1412		,0043	nil		700	25	ļ
Julia Ward Howe School	lst Floor Classroom	.2536		.0368			630	22	
	2nd Floor Classroom	.2536		.0368	.421		630	18	
Garfield JHS	Classroom	.2855		nil	nil		630	22	
Cheverus School	8, 2 [:]	.2068	.1262	nil	nil		500	20	
Chapman School	Top Floor Classroom	.3861		nil	.4939		350	14	
	Lower Floor Classroom	. 3861 ·		nil			350	18	
Chelsea Memorial Hospital	201, 210	.0285		nil	nil		200	27	
Williams School	Top Floor Classroom	.2198		.0008	.0112		500	21	
Edward School	Classroom	.2568		nil	nil		370	20	
Barnes School	Top Floor Classroom	.1065		nii	nil	.1268	630	21	
Lawrence Memorial	435	.0761		nil	nti		160	21	
riospital	206	C	nstructio	n Data N	lot Provid	led	520		

1

TABLE E-4. CALCULATED NOISE REDUCTIONS - BOS

E--4

		s -	10 ^{~EWI}	^{√10} (ft ²)		
Building	Room	Windows	Walls	Roof	A (sabins)	NR (dB)
Newton Estates School	Classroom	.4184	.0068	.0036	800	21
Longino School	Classroom	.2853	.0018	.0131	800	22
Lake Shore H.S.	Classroom	.333	.001	100.	800	22
Eastern School	Classroom	.3804	.0012	.0131	800	21
College Park H.S.	Classroom	.3089	.0009	.0021	630	21
Woodward Academy	Classroom	.0951	.0019	.0015	1250	29
William A . Fountain School	Classroom	.1902	.0007	.0012	800	24
Crawford Long School	Classroom	.3566	.0007	.0016	800	22
Samuel Young School	Classroom	.4057	.0008	.0013	800	21
St. John School	Classroom	.3804	.0016	.0012	1250	23

TABLE E-5. CALCULATED NOISE REDUCTIONS - ATL

			$5 \cdot 10^{-EWR/10} (ft^2)$]	
Building	Room	Windows	Doors	Walls	Roof	Unit Vent	Glass Blocks	A (sabins)	NR (dB)
Clyde Miller Elem. School	Classroom	.3106		.0052	.0755			400	18
Park Lane Elem. School	20, 6	.2549		.0043	.0085	.0095		800	23
Sable School	Faculty Dining Room	.3423	.0317	.0010	.0024			250	16
· ·	4	.3059	.0340	.0010	.0024			1000	23
Montview School	Classroom	.1173	.1589	.0366	.0315	.0197		630	21
North JHS	12 13	.1141 .3360		_0003 _0003	.0720 .0720	.0126 .0126		630 630	24 21
Fitzsimons Hospital	4133, 4062	.0235		.0007				160	26
Boston Elem, School	1	.3426		.0006	.0101	.0142	.0064	800	21
Paris Elem. School	1	.3426		.0006	.0101	.0142	.0064	800	21
Denver General Hospital	Patient Room 13' x 15'	.1030		.0002			~~~	150	20
Elyria School	Classroom	.2052	<u></u>	.0039	.2628	.0095		500	18

• 5

TABLE E-6. CALCULATED NOISE REDUCTIONS - DEN

APPENDIX F

INSTRUMENTATION

Tape Recorder: Kudelski Nagra IV-SJ

Tape: 3M Low Noise 18-7

Tape Speed: 3-3/4 inches per second

Microphone:

Bruel & Kjaer $\frac{1}{2}$ " Condenser Microphones Type 4133 Type: Free-field 0° linear response Temperature Coefficient: Less than $\pm 0.1 \text{ dB/}^{\circ}\text{C}$ between -50°C and $\pm 60^{\circ}\text{C}$ Ambient Pressure Coefficient: -0.1 dB for $\pm 10\%$ pressure change Relative Humidity Influence: Less than 0.1 dB

Preamplifiers: Kudelski

Sound Level Meter: Bruel & Kjaer Precision Sound Level Meter Type 2203, ANSI Type I Equipped with Octave Filter Set Type 1613 (In Boston, the SLM, equipped with Flexible Extension Rod UA 1096, was used as an amplifier for the interior recorded channel.)

Field Calibrator: Bruci & Kjacr Type 4230 Calibration Level: 94 dB Frequency: 1000 Hz ± 1.5% Accuracy: ± 0.25 dB @ 25°C ± 0.50 dB between 0°C and 50°C Ambient Pressure Influence: ± 0.05 dB /100 mbar from 500 to 1100 mbar Temperature Coefficient: See Accuracy

F-1

APPENDIX G

COMPARISON OF MEASURED AND PREDICTED NOISE REDUCTION

G-1 Measured Noise Reduction

ē

Tables G-1 through G-3 show the measured exterior noise levels (corrected to free-field), interior noise levels, and noise reduction. Except where noted otherwise, each value shown is the average of measurements from twelve aircraft noise events. The standard deviation for each set is shown. In addition to measurement variations, the standard deviation of the levels represents the variation of levels between aircraft. The standard deviation of the noise reductions is due to variations in NR associated with aircraft spectrum variations, plus spatial variations in noise within the room. These variations are normally expected, and are the reason why NR is taken as the average of a number of events and a number of interior positions.

G-2 Comparison With Prediction

Tables G-4 through G-6 show the measured and predicted NR for each room, together with the difference (Δ). The difference is the predicted value minus the measured value.

A statistical analysis of the differences has been performed for the buildings around each airport, and is summarized in Table G-7. Shown are the mean difference, standard deviation of differences, and 90 percent confidence limits.

The confidence limits are illustrated in Figure G-1. Shown are the 90 percent confidence limits for the three city groupings, relative to $\Delta = 0$. Also shown for comparison is the computed confidence limit of ± 1.9 dB given in Table B-1 of Appendix B for the difference between noise reductions computed with EWR and by the classical method using transmission loss data at each frequency band. While the confidence limits about the mean for each city fall well within this expected EWR confidence interval, the extremes of the confidence limits for the measured data for all three cities extends to ± 2.5 . However, considering inherent field measurement accuracy of typically $\pm 1-2$ dB, these confidence limits for the difference between measured and predicted noise reduction are quite reasonable. The use of the EWR method for the present project is thus validated.

G-3 Comparison of Aircraft Noise Levels With Predictions

At each measurement location predicted noise levels were obtained from the fleet median noise contours discussed in Chapter 3. Figure G-2 shows the statistical distribution of the differences between predicted levels and levels recorded at each study building. Predicted is subtracted from measured, so that a positive difference means a louder measured event. The curves shown are the cumulative distributions, and represent the percentage of events which exceed the difference shown on the abscissa.

The following points may be noted on Figure G-2:

- The standard deviation is approximately 8 dB. This is a typical variation observed between aircraft levels at a given point.
- The predicted levels are somewhat higher than median. This may be due to quieter aircraft types (general aviation jets, non-jet aircraft) being in the measured sample. Aircraft were not identified during measurements; in some cases they could not even be seen.
- Predicted levels corresponded to the 40th noisiest percentile of measurements at DEN, 20th at LAX, and 10th at BOS.

The difference in mean between the three airports shows that no one noise contour can be applied equally well to all airports. The one used did, however, fall within a reasonable, slightly conservative, range relative to measurements.

		Exte	erior	Interior		NR	
Building	Room	Av.	ď	Av.	σ	Av.	σ
Imperial School	2	85.7	4.1	56.8	3.2	28.9	1.8
	11	85.0	5.2	57.5	3.1	27.5	2.6
	6	82.6	5.1	50,8	3.4	31.8	2.5
Lennox H.S.	4 Bldg 3	71.3	3.3	50.9	4.2	20.4	2.3
	3 Bldg 6	75.6	5.6	53.7	5,7	21.9	2.0
	3 Bldg 4	71.3	3.7	57.9	3.3	13.4	1.5
Feiton Ave. School	9	89.1	5.0	70.8	5.6	18.3	2.4
	5	83.8	6.5	65.7	8.7	18.1	2.7
	11	86.1	6.0	66.9	7.3	19.2	2.4
Clyde Woodworth School	4	78.4	5.1	57.0	4.1	21.4	1.5
Morningside H.S.	J2	86.0	3.4	63.2	3.9	22.8	1.1
	∨2	76.0	8.4	54.5	6.3	21.5	3.5
Centinella Hospital	5114	68.3	3.5	40.8*	1.9	30.0*	1.7
	8128	68.9	3.2	42.6**	1.5	29.9**	1.0
Westchester H.S.	F9	67.2	5.4	51.3	4.9	16.0	1.3
Imperial Hospital	227	69.4	2.3	46.0	2.0	23.3	2.3
	224	69.2	2.3	47.4	1.9	21.3	2.7

TABLE G-1. MEASURED LEVELS AND NOISE REDUCTION - LAX

* Counting only 5 interior measurements above background.

** Counting only 4 interior measurements above background.

G-3

		Exte	erior	Inte	rior	۱ ۱	١R]
Building	Room	Av.	σ	Av.	σ	Av,	σ	
Winthrop Community	319	82.8	7.7	60.3	9.0	22.5	3.6	
Hospital	271	78.1	6.1	49.4	5.7	28.8	1.6	Ì
Winthrop JHS	206	76.3	4.9	56.3	3.1	20.0	3.4	
	220	68.8	6.9	45.0	7.3	23.8	6.5	
Julia Ward Howe	Left Front	84.7	2.4	63.1	2.0	21.6	1.0	
SCNOOL	Right Front	85.7	3.5	60.7	3.3	25.0	1.0	
Cherverus School	8	77.2	4.9	58.8	4.0	18,4	2.4	
	2	78.9	2.4	61.0	1.4	18.0	1.9	ļ
Chapman School	Left	79.0	4.8	70.0	5.5	9.0	1.6	
	Right	78.3	4.2	64.7	4.3	13,4	2.3	
Chelsea Memorial	201	74.3	2.9	50.3	2.0	24,1	3.0	
	210	78.9	5.3	55.0	4.3	24,0	3.8] .
Williams School	15	75.7	4.9	57.2	4.8	18,5	1.5	
	20	77.2	3.9	58.1	3.6	19.0	0.6	

TABLE G-2. MEASURED LEVELS AND NOISE REDUCTION - BOS

4		Exte	erior	Inte	rior	Ν	JR
Building	Room	Av.	σ	Av.	σ	Av.	ď
Clyde Miller Elem. School	5	72.9	4.5	57.7	3.9	16,9	1.0
Park Lane Elem.	20	91.5	6.3	57.4	5.3	34.1	2.9*
School	6	87.9	3.9	53.1	3.3	34.8	2.6 *
Sable School	Faculty DiningRoom	85.7	6.0	70.3	4.3	15.5	2,7
	4	79.6	5.1	50.6	5,1	28.7	1.5
North JHS	13	84.5	6.2	59.4	3.2	25.0	5.2
	12	87.6	3.4	63.5	3.3	24.1	0.7
Fitzsimons Hospital	4133	81.9	2.9	56.4	3.6	25.5	1.0
	4062	81.7	3.7	56.3	4.0	25,3	1.5
Boston Elem. School	1	87,6	2.6	61.8	2.8	25.8	1.8
Paris Elem. School	1	61.5	3.3	41.6	1.9	19.9	2.0

TABLE G-3. MEASURED LEVELS AND NOISE REDUCTION - DEN

* Wall with windows facing away from aircraft. Microphone on wall facing aircraft approximately 10 dB self-shielding.

ī

Building	Room	Predicted	Meas'd	Δ
Imperial School	2	25.8	28.9	-3.1
	11	25.8	27.5	-1.7
	6	31.8	31.8	0
Lennox H.S.	4 Bldg 3	21.4	20,4	1.0
	3 Bldg 6	21.4	21,6	-0.2
	3 Bldg 4	21.4	18.0	3.4
Felton Ave. School	9	19.2	18.3	0.9
	5	19.2	18,1	1.1
	11	19.2	19.2	0.0
Clyde Woodworth School	4	18.0	21.4	-3.4
Morningside H.S.	J2	18.3	22.8	-4.5
	∨2	20.1	21.5	-1.4
Centinella Hospital	5114	25.7	30.0	-4.3
	8128	25.7	29.9	-4.2
Westchester H.S.	F9	19.0	16.0	3.0
Imperial Hospital	227	24.0	23.3	0.7
	224	24.0	21.9	2.1

TABLE G-4. PREDICTED AND MEASURED NOISE REDUCTION - LAX

 $\overline{\Delta}$ = -0.4 , $|\overline{\Delta}|$ = 2.2 , $(\overline{\Delta^2})^{\frac{1}{2}}$ = 2.6

∠, (Δ*)⁻ =

Building	Room	Predicted	Meas'd	Δ
Winthrop Hospital	319	22.0	21.7	0.3
•	271	28.0	28.8	-0.8
Cherverus School	8	20.0	18.4	1.6
	2	20.0	18.0	2.0
Winthrop J.H.S.	206	28.0	23.0	5.0
	220	25.0	27.0	-2,0
Chapman School	3rd Fl., left	14.2	. 9.0	5.2
	3rdFl., rt.	14.2	13,4	0.8
Julia Ward Howe	Left	22.0	21.6	0.4
School	Right	22.0	25.0	-3.0
Williams School	15	21.6	18,5	3.1
	20	20,6	19.0	1.6
Chelsea Memorial	201	26,9	24.1	2,8
Hospîtal	210	26,9	25.0	1,9

TABLE G-5. PREDICTED AND MEASURED NOISE REDUCTION - BOS

and the co

1912

$$\overline{\Delta}$$
 = 1.3, $\overline{|\Delta|}$ = 2.2, $(\overline{\Delta^2})^{\frac{1}{2}}$ = 2.6

Building	Room	Predicted	Meas'd	Δ
Clyde Miller Elem. School	Classroom	18.0	16.9	1.1
Park Lane Elem. School	20* 6*	33.0 33.0	34.3 34.8	-1.3 -1.8
Sable School	Faculty DiningRoom	16.5	15.5	1.0
	4	22.9	28.7	-6.0
North J.H.S.	13	21.0	25.0	-4.0
ĺ	12	23.9	24.1	-0,2
Fitzsimons Hosp.	4133	26.5	25,5	1.0
	4062	26.5	25.3	1.2
Boston Elem.School	ו	21.5	25.8	-4.3
Paris Elem.School	1	21.5	19.9	1.6

TABLE G-6. PREDICTED AND MEASURED NOISE REDUCTION - DEN

 $\overline{\Delta} = -1.2$, $\overline{|\Delta|} = 2.1$, $(\overline{\Delta^2})^{\frac{1}{2}} = 2.7$

* Includes 10 dB shielding due to windows facing away from aircraft.

				90	0% Confide	nce Limit
Airport	N*	Mean	ď	Lower	Upper	About Mean
LAX	17	-0.62	2.55	-1,70	0.46	<u>+</u> 1.08
BOS	14	1.35	2.34	0,24	2.46	<u>+</u> 1.11
DEN	11	-1.06	2.65	-2,51	0.38	<u>+</u> 1,45

TABLE G-7. SUMMARY OF STATISTICAL ANALYSIS OF DIFFERENCES BETWEEN PREDICTED AND MEASURED NR

* No. of rooms measured for each city

.

FIGURE G-1. COMPARISON OF 90 PERCENT CONFIDENCE LIMITS FOR PREDICTED MINUS MEASURED VALUES OF NOISE REDUCTION FOR THREE AIRPORTS. (THE MEAN DIFFERENCE FOR EACH CITY IS DESIGNATED BY THE DIAMOND.) FOR COMPARISON THE ANTIC-IPATED 90% CONFIDENCE LIMITS ACCORDING TO CALCULATED VALUES OF NOISE REDUCTION. (SEE TABLE B-1 IN APPENDIX B.)

t kan se se kan kan

APPENDIX H

SOUNDPROOFING REHABILITATION WORKSHEETS

Building: Newton Estates School Room: Classroom 43 Exterior Noise: NEF Average Peak Level 95 Measured Noise Reduction (LAX, DEN, BOS, only) Analysis of Existing Noise Insulation Description % Total Transmission Component Single glazed, 264 ft² 98% Windows 2% 4" brick & 8" block Walls 7¹/₂" concrete & insulation nil Roof 800 Sabins. Interior Absorption: Predicted Noise Attenuation = 21 Stage I Rehabilitation Action: Replace windows with double glazing. Provide mechanical ventilation as needed. NR = 32 Stage II Rehabilitation Action: Eliminate windows and fill space with brick and black. NR = 37 Stage III Rehabilitation Action: NR = ------Comments:

NOISE INSULATION ANALYSIS

ATL

Building: Long	ino School	Room:	Second Floor
Exterior Noise:	NEF35	Average Peak Level	
Measured Noise	Reduction (LAX, DEN, BO	S, only)	•• •= •=
	Analysis of Exi	sting Noise Insulation	
Component	Desc	ription	% Total Transmission
Windows	Single glazed, 180 ft ²		95%
Walls	4" brick & 8" block		1%
Roof	2" concrete, 2" insulation	n, roofing, acoustic til	es4%
Interior Absorption	on: 800	Sabins.	
	Predicted Noise	Attenuation = 22	
Stage 1 Rehabil	itation		······
Action: Replace	windows with sealed double	glazing, Provide med	hanical ventilation as
			NR = <u>32</u>
Stage II Rehabili	itation	<u></u>	·····
Action: Elimina fiberboard and 5/	te windows and fill space wi '8" gypsumboard, then new c	th brick and block to m acoustic tiles, to ceilin	atch wall. Cement ½" g.
			NR = <u>40</u>
Stage III Rehabili	tation		
Action:			
			NR =
Comments: Exis	ting NR the same, Stage I N	IR = 34 and Stage II NI	R = 41 on first floor.
<u></u>			<u></u>

ATL

	NOISE IN	SULATION ANALYSIS	
Building: La	ke Shore High School	Room:	Classroom
Exterior Noise:	NEF 38	Average Peak Level	90
Measured Noise	Reduction (LAX, DEN, I	305, only)	v = +
······	Analysis of I	Existing Noise Insulation	<u></u>
Component	De	scription	% Total Transmission
Windows	Single glozed, 210 ft ²	<u></u>	99%
Walls	4" brick & 8" block		nil
Roof	21" concrete, 3" air spac	ce, acoustic tiles	See Comments
<u></u>			
Interior Absorptio	n: <u>800</u>	Sabins.	
····	Predicted Noi	se Attenuation = 22]
Stage I Rehabili Action: Replace needed.	tation windows with sealed doub	le glazing. Provide mec	hanical ventilation as
			NR = <u>34</u>
Stage II Rehabili	tation		
Action: Eliminat	e windows and fill space v	with brick and block to m	atch walls.
			NR = <u>41</u>
Stage III Rehabili	ation		
Action:			
			NR ==
Comments: Roof	transmission negligible pr	ovided joints between til	es are well sealed. This
must be verified (and corrected if need be)	before other rehabilitatio	n

ATL

- -----

ATL

Building: East	tern School	Room :	2nd Story Classroom
Exterior Noise:	NEF37	Average Peak Level	
Measured Noise	Reduction (LAX, D	EN, BOS, only)	** ==
	Analys	is of Existing Noise Insulation	
Component		Description	% Total Transmission
Windows	Single glazed, 240	ft ²	96%
Walls	4" brick & 8" bloc	k	nil
Roof	2" concrete & 2" in	nsulation & roofing _r acoustic t	iles 3%
	·····		
Interior Absorpti	on: 800	Sabins.	
	Predicte	d Naise Attenuation = 21	
Stage 1 Rehabil	itation		
Action: Replace	e windows with sealed	t double glazing. Provide me	chanical ventilation as
			NR =1
Stage II Rehabil	Itation		
Action: Elimina gypsumboard, the	te windows and fill sp en acoustic tiles to ce	pace with brick and block. C illing on second floor.	Cement $\frac{1}{2}$ " fiberboard, 5/8"
[NR =
Stage III Rehabili	itation		
Action:			
			NR =
Comments: First	floor original and St	age II NR the same as second	. First floor Stage I NR
= 33.			

Building: <u>Col</u>	egePark High School Roo	m: <u>Second Story Classroom</u>
Exterior Noise:	NEF Average Peak L	evel87
Measured Noise	Reduction (LAX, DEN, BOS, only)	
<u> </u>	Analysis of Existing Noise Insula	ition
Component	Description	% Total Transmission
Windows	Single glazed, 195 ft ²	99%
Walls	10" concrete	nil
Roof	2" concrete, 3/4" plaster on lath ceiling	1%
Interior Absorptio	Predicted Noise Attenuation =	21
Stage I Rehabil Action: Replace needed.	itation windows with sealed double glazing. Provide	e mechanical ventilation as
		NR = <u>33</u>
Stage 11 Rehabil	itation	······································
Action: Elimina	te windows and fill space with 9" brick .	
·····		NR = <u>42</u>
Stage III Rehabili	tation	
Action:		
		NR =
Comments: Assu	ming at least 2" air space between roof slab ar	d ceiling. If not, must
cement 2" fiberbo	ard and 5/8" gypsumboard to second story ceil	ing before other rehabilitation.
First floor NRaim	ost the same.	

`H**-**5

ATL

Building: <u>Wo</u>	adward Academy	Room: _I	p Floor Classroom
Exterior Noise:	NEF 35 Average	Peak Level	73
Measured Noise	Reduction (LAX, DEN, BOS, only)	<u></u>	
[Analysis of Existing Noi	se Insulation	
Component	Description		% Total Transmission
Windows	Single glazed, 80 ft ²		97%
Walls	8" brick		2%
Roof	6" concrete, ½" plaster ceiling		1%
Interior Absorpti	on: 1250 Sabins.		
	Predicted Noise Attenuati	on = 29	
Stage I Rehabi	litation		
Action: Replac needed.	e windows with sealed double glazing.	Provide meci	nanical ventilation as
			NR = _39
Stage II Rehabil	Itation		
Action: Elimina	te windows and fill space with bricks,		
			NR = _43
Stage III Rehabil	itation		
Action:			
· ·			NR =
Comments: See	comment for College Park H.S. First	and second st	ory Stage 1 NR = 40,
Stage II NR = 46	•		<u></u>

ATL

Building: Wil	liam Founta	in School		Room:	Classroom
Exterior Noise:	NEF	35	Average	Peak Level	75
Measured Noise	e Reduction	(LAX, DEN	, BOS, only)		
		Analysis o	of Existing Noise	Insulation	
Component			Description		% Total Transmission
Windows	Single g	lazed, 120 ft	2		99%
Walls	8" brick				nil
Roof	6" slab,	acoustic tile	ceiling		1%
Interior Absorpt	ion:	800	Sabins.		·
		Predicted 1	Noise Attenuatio	n = 24	
Stage I Rehabi Action: Replac needed.	ilitation :e windows v	with sealed d	ouble glazing.	Provide mech	anical ventilation as
					NR = <u>36</u>
Stage II Rehabi	litation	······································	<u> </u>		
Action: Elimin	ate window:	s and fill spac	ce with brick.		
	· · · · · · · · · · · · · · · · · · ·				NR = <u>43</u>
Stage III Rehabi	litation		<u>.</u>		<u></u>
Action:					
					NR =
Comments: Ass	uming at lea	st 2" air spae	ce between roof	slab and cei	ing. Joints between
tiles must also b	e well seale	d. Otherwis	ie, must correct	as described	in comments for Lake
Shore H.S. and	/or College	Park H.S.			

ATL

Building: <u>Crav</u>	vford Long Schoo	<u></u>	Room:	Second Story Classroom	
Exterior Noise:	NEF33	Averag	e Peak Level	73	
Measured Noise	Reduction (LAX	(, DEN, BOS, only)		· · · · · · · · · · · · · · · · · · ·	
r	An	alysis of Existing No	ise Insulation	<u> </u>	
Component		Description		% Total Transmission	
Windows	Single glazed,	<u>225 ft²</u>		99%	
Walls	8" brick				
Roof	ó" concrete, a	coustic tile ceiling		nil	
		······································			
Interior Absorptic	in:80	0 Sabins.			
	Pred	icted Noise Attenua	tion = 22		
Stage I Rehabilitation Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.					
				NR = <u>33</u>	
Stage II Rehabili	tation				
Action: Eliminat	e windows and fi	ili space with bricks.	•		
				NR = <u>42</u>	
Stage III Rehabili	tation				
Action:					
				NR =	
Comments: See	comment for Wil	liam Fountain School	. For first fi	loor, Stage II NR = 45.	

ATL

đ
ATL

NOISE INSULATION ANALYSIS

Building: <u>Samu</u>	el Young School Room; C	lassroom
Exterior Noise:	NEF Average Peak Level	100
Measured Noise	Reduction (LAX, DEN, 8OS, only)	Fra 55 55 5 19
·	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, 250 ft ²	99%
Walls	confusing, but brick & block , small area	ni/
Roof	2" gypsum deck, builtup roofing, 12" space, ½" acoustic tile	<u>nil</u>
Interior Absorptio	on: <u>800</u> Sabins.	
 	Predicted Noise Attenuation = 21	
Stage I Rehabil	itation	
Action: 'Replace needed.	windows with sealed double glazing, Provide mech	anical ventilation as
		NR = _ <u>33</u>
Stage II Rehabil	Itation	
Action: Elimina	te windows and fill space with 9" brick.	
		NR = <u>42</u>
Stage III Rehabili	tation	
Action:		
		NR =
Comments: Join	nts between acoustic tiles must be well sealed.	······································
<u> </u>		

ATL

1.1

NOISE INSULATION ANALYSIS

Building: St. John School	Room: Classroom
Exterior Noise: NEF40 Average Po	eak Level85
Measured Noise Reduction (LAX, DEN, BOS, only)	9#b
Analysis of Existing Noise	Insulation
Component Description	% Total Transmission
Windows Single glazing, most of one wall	99%
Walls B" brick, one wall corner room	nil
Roof 6" concrete, acoustic tile ceiling	
······	
Interior Absorption: 1250 Sabins.	
Predicted Noise Attenuation	= 23
Stage J Rehabilitation	
Action: Replace windows with sealed double glazing. P needed.	rovide mechanical ventilation as
	NR =
Stage II Rehabilitation	······································
Action: Eliminate windows and fill space with bricks.	
	NR = <u>43</u>
Stage III Rehabilitation	
Action:	
	NR =
Comments: Assuming 2" air space between concrete slab	and acoustic tiles. Also, joints
etween tiles must be well sealed.	

LAX

NOISE INSULATION ANALYSIS

Building: Imp	erial School Room: 2	811	
Exterior Noise:	NEF Average Peak Level	93	<u> </u>
Measured Nois	e Reduction (LAX, DEN, BOS, only)28		
	Analysis of Existing Noise Insulation		
Component	Description	% Total	Transmission
Windows	Single glazed, wood sash, 180 ft ²		82%
Walls	9" Brick		2%
Door	Solid wood, weatherstripped		15%
Roof	Builtup roofing, fiberboard ceiling, attic space		1%
Interior Absorp	rion: <u>1200</u> Sabins. Predicted Noise Attenuation = <u>26</u>		
Stage I Rehab Action; Repla needed.	ilitation ce windows with sealed double glazing. Provide mech :	nanical ven	tilation as
Stage II Rehab	ilitation		
Action: Stage replaced with s	I, plus install acoustic seals around door. Any hollow olid at least 1 3/4" thick.	v core door:	must be
		NR =	37
Stage III Rehab	litation		
Action: Elimin existing doors w	ate windows and fill space with bricks, some as exteri with acoustic double doors, or construct entrance vesti	ior wall . R bule using v	eplace vell sealed
solid core doors	•	NR =	42
Comments: 1/	3 of window area facing away from aircraft.		

Building: <u>Imp</u>	erial School	Room: <u>6</u>	
Exterior Noise:	NEF Aver	age Pook Level <u>93</u>	
Measured Noise	Reduction (LAX, DEN, BOS, only	y) 32	·····

. .

	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	None; space filled with stucco/frame construction	16%
Walls	Same as 2 & 11	8%
Door	n n n	72%
Roof	и и и	3%
Interior Absorption	n: 1200 Sabins.	
	Predicted Noise Attenuation = 32	
Stage I Rehabilit Action: Install ad	ation coustic seals around door.	
		NR = <u>37</u>
Stage II Rehabilit	ation	<u> </u>
Action: Remove s or entrance vestibu	tucco/frame window filling and replace with bricks. Jle .	Install double door
		NR = 42
Stage III Rehabilita	ation	
Action:		
		NR =
Comments: Existin	ng room is similar to Stage I rehabilitation of Rooms	2 & 11; stucco/frame
window filling is no	ot significantly more effective than double glazing,	

LAX

Building:	Lennox High	School		Room: 4	, Bldg.3; 3,Bldg.6; 3,Bldg.4
Exterior Noise:		38	Average	Peak Level	80
Measured Noise	Reduction	(LAX, DEN, BO	S, only)	20.4, 21.6,	18.0

	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, steel sash, 167 ft ²	56%
Door	Hollow core wood, no seals	42%
Walls	ó" concrete & stucco	1%
Roof	Built up roofing, fiberboard ceiling, attic space	nii
Interior Absorpti	on: <u>630</u> Sabins.	
	Predicted Noise Attenuation = 21.4	
Stage I Rehabi Action: Replace needed. Replace	litation e windows with sealed double glazing. Provide mech e door with 1 3/4" solid core door, weatherstripped.	anical ventilation as
		NR = <u>30</u>
Stage 11 Rehabil	Itation	
Action: Stage 1	, plus acoustical seals around door.	
		NR = <u>33</u>
Stage III Rehabi	litation	
Action: Elimina acoustic double	ite windows and fill space with 6" concrete & stucco door, or construct entrance vestibule using well seale	Replace door with ed solid core doors.
		NR = <u>38</u>
Comments:		

LAX

Building: Feltor	n Avenue School Room: 9,	5, 11
Exterior Noise: N	NEF Average Peak Level	90
Measured Noise R	Reduction (LAX, DEN, BOS, only) 18.3, 18.1,	19.2
ſ <u></u>	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, wood sash, 270 ft ²	85%
Walls	Stucco/gypsumboard frame constr., uninsulated	3%
Door	Steel, no seals	4%
Roof	Builtup roofing, fiberboard ceiling, vented attic	9%
	space.	·
Interior Absorption	n:630Sabins.	
	Predicted Noise Attenuation = 19.2	
Stage I Rehabilit Action: Replace needed.	ation windows with sealed double glazing, Provide mech	anical ventilation as
		NR = <u>26</u>
Stage II Rehabilit Action: Stage I,	ation plus install acoustic seals on door and install acoust	ic baffles in attic vents.
		NR = <u>30</u>
Stage III Rehabilit	ation	
Action: Eliminate and attic, install s doors, or construct	windows and replace with stucco/gyp frame constru- second layer 날" gypsumboard on walls. Replace doo t entrance vestibule using well sealed solid core doo	nction. Insulate walls or with acoustic double ors. NR = 35
Comments		

LAX

Building: Clyde Woodworth School	Room:	4
Exterior Noise: NEF _ 37	Average Peak Level	88
Measured Noise Reduction (LAX, DE	N, BOS, only)	
Anglysie	of Existing Noise Insulation	<u></u>

Component	Description	% Total Transmission
Windows	Single glazed, 240 ft ²	63%
Walls	Wood/stucco/gyp frame const., uninsulated	5.4%
Doors	2 hollow core wood, no seals	32%
Roof	Builtup roofing, fiberboard ceiling	nil
Interior Absorptio	n: <u>630</u> Sabins.	
	Predicted Noise Attenuation = 18	

Stage 1 Rehabilitation

Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed. Replace doors with 1 3/4" solid core, weatherstripped.

NR = 27

Stage II Rehabilitation

Action: Eliminate windows and replace with stucco/gyp frame construction. Add $\frac{1}{2}$ " gypsumboard to interior of walls. Insulate walls and attic. Replace doors with double acoustic doors or vestibules with well sealed solid core doors.

NR = <u>37</u>

Stage III Rehabilitation

Action:

NR =

Comments:

H-15

LAX

LAX

Building: <u>Mo</u>	mingside High School Room; J2	2
Exterior Noise:	NEF Average Peak Level	88
Measured Noise	Reduction (LAX, DEN, BOS, only)	22.8
	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, 340 ft ²	80%
Doors	2 steel, no seals	18%
<u>Walls</u>	Brick	1%
Roof	Builtup roofing, fiberboard ceiling	nil
Interior Absorptio	on:500Sabins.	
	Predicted Noise Attenuation = 18.3	
Stage I Rehabil	itation	
Action: Replace needed. Weathe	a windows with sealed double glazing. Provide mech enstrip doors.	anical ventilation as
		NR =
Stage II Rehabil	itation	· · · · · · · · · · · · · · · · · · ·
Action: Elimina doors or vestibule	te windows and fill space with bricks. Replace doors as using well sealed solid core doors.	with double acoustic
·		NR = <u>40</u>
Stage III Rehabili	itation	
Action:		
		NR =
Comments:		

postatuas wo	rningside High School	Room :	<u>v2</u>
Exterior Noise;	NEF	Average Peak Level	88
Measured Nois	e Reduction (LAX, DEN, B	OS, only)21.5	
	Analysis of E	xisting Noise Insulation	
Component	Des	cription	<u>% Total Transmissio</u>
Windows	Single glazed, 150 ft ²	_ <u></u>	65%
Doors	2 Steel, no seals		32%
Walls	Stucco/plaster frame cons	truction	3%
Roof			nil
Interior Absorpt	ion: 500	Sabins .	
	Predicted Nois	e Attenuation = 20.1	
Stage 1 Rehabi	litation		
Stage 1 Rehabi Action: Replac needed. Weat	litation e windows with sealed doubl herstrip doors.	le glazing. Provide mech	anical ventilation as
Stage 1 Rehabi Action: Replac needed. Weath	litation e windows with sealed doubl herstrip doors.	le glazing, Provide mech	anical ventilation as
Stage 1 Rehabi Action: Replac needed. Weat Stage 11 Rehabi	litation e windows with sealed doubl nerstrip doors. litation	le glazing, Provide mech	anical ventilation as NR = _29
Stage I Rehabi Action: Replac needed. Weat! Stage II Rehabi Action: Elimina Add ½" gypsumb	litation te windows with sealed doubl herstrip doors. litation ate windows and fill space w oard to interior of walls. Re	le glazing, Provide mech ith wall construction, In aplace doors with double o	anical ventilation as NR = _29 sulate walls and roof. acoustic doors or vesti-
Stage 1 Rehabi Action: Replac needed. Weat! Stage II Rehabi Action: Elimin Add <u>1</u> " gypsumb pule with well s	litation windows with sealed double nerstrip doors. litation ate windows and fill space w oard to interior of walls. Re ealed solid core doors.	le glazing, Provide mech ith wall construction, In aplace doors with double c	anical ventilation as NR = _29 sulate walls and roof. acoustic doors or vesti- NR = _40
Stage 1 Rehabi Action: Replac needed. Weat Stage II Rehabi Action: Elimin Add ½" gypsumb bule with well s	litation te windows with sealed doubl nerstrip doors. litation ate windows and fill space w oard to interior of walls. Re ealed solid core doors.	le glazing, Provide mech ith wall construction, In aplace doors with double c	anical ventilation as NR = _29 sulate walls and roof. acoustic doors or vesti- NR = _40
Stage 1 Rehabi Action: Replac needed. Weat1 Stage II Rehabi Action: Elimin Add 1: gypsumb bule with well s Stage II Rehabi Stage II Rehabi	litation te windows with sealed doubl nerstrip doors. litation ate windows and fill space w oard to interior of walls. Re ealed solid core doors. litation	le glazing, Provide mech ith wall construction. In aplace doors with double o	anical ventilation as NR = _29 sulate walls and roof. acoustic doors or vesti- NR = _40
Stage 1 Rehabi Action: Replac needed. Weat Stage 11 Rehabi Action: Elimina Add 1: gypsumb bule with well s Stage 111 Rehabi Action:	litation te windows with sealed doubl nerstrip doors. litation the windows and fill space w oard to interior of walls. Re ealed solid core doors.	le glazing. Provide mech ith wall construction. In aplace doors with double c	anical ventilation as NR = _29 sulate walls and roof. acoustic doors or vesti- NR = _40 NR ≈
Stage 1 Rehabi Action: Replac needed. Weat Stage 11 Rehabi Action: Elimina Add ½" gypsumb bute with well s Stage 111 Rehabi Stage 111 Rehabi	litation te windows with sealed doubl herstrip doors. litation ate windows and fill space w oard to interior of walls. Re ealed solid core doors. litation	le glazing. Provide mech ith wall construction. In aplace doors with double c	anical ventilation as NR = _29 sulate walls and roof. acoustic doors or vesti- NR = _40 NR =
Stage 1 Rehabi Action: Replac needed. Weat Stage 11 Rehabi Action: Elimina Add 1" gypsumb bule with well s Stage 111 Rehabi Action: Stage 111 Rehabi	litation te windows with sealed doubl nerstrip doors. litation the windows and fill space w oard to interior of walls. Re ealed solid core doors. litation	le glazing. Provide mech ith wall construction. In aplace doors with double c	anical ventilation as NR = _29
Stage 1 Rehabi Action: Replac needed. Weat Stage 11 Rehabi Action: Elimina Add ½" gypsumb bute with well s Stage 111 Rehabi Stage 111 Rehabi Action:	litation se windows with sealed doubl herstrip doors. litation ate windows and fill space w oard to interior of walls. Re ealed solid core doors. litation	le glazing. Provide mech ith wall construction. In aplace doors with double c	anical ventilation as $NR = 29$ sulate walls and roof. acoustic doors or vesti- $NR = 40$ $NR \approx$

LAX

Exterior Noise: 1 Measured Noise F Component	NEF <u>33</u> Reduction (1	.AX, DEN, BO	Average	Peak Lovel _	75
Measured Noise F	Reduction (1	AX, DEN, BO			
Component			S, only)	16	
Component		Analysis of Exis	sting Noise	e Insulation	<u> </u>
		Descr	iption		% Total Transmissio
Windows	Single glaze	d, wood sash			50%
Doors	2 solid core	wood, no seals			48%
Roof	6" concrete				1%
Walls	8" concrete				1%
					,,,,,
Interior Absorption	n:	500	Sabins.		
	P	redicted Noise	Attenuatic	on = 19	
Stage I Rehabilit	tation				······
Action: Replace needed. Install a	windows with coustic seals	on doors.	glazing.	Provide mecho	inical ventilation as
			,		NR = <u>36</u>
Stage II Rehabilit	ation		·····		
Action: Eliminate double doors or con	e windows an nstruct entra	d fill space with nce vestibule us	n concrete ing well s	 Replace doc ealed solid cor 	ors with acoustic re doors.
					NR = 41
Stage III Rehability	ation				
Action:					
					NR =
Comments:		•			

LAX

Ņ

Building:	Figueroa Street Sch	nool	Room :	Classroom
Exterior Noise	: NEF	Average	Peak Level	
Measured Noi:	se Reduction (LAX,	DEN, BOS, only)		
	Anal	ysis of Existing Nois	e Insulation	
Component		Description		% Total Transmission
Windows	Single glazed, 1	20 ft ²		95% - 100%
Walls	9" Brick & Stucc	0		nil
Roof	Builtup roofing,	plaster ceiling		5% (2nd floor)
······				
Interior Absorp	ition:500	Sabins.		
	Predic	ted Noise Attenuati	on = 22	
Stage 1 Rehat				
Action: Repla needed. Insul	ce windows with seal ate roof.	led double glazing.	Provide mech	inical ventilation as
				NR = <u>34</u>
Stage II Rehal	ilitation	·		
Action: Elimin	nate windows. Insula	ote roof.		
				$NR = \frac{38}{}$
Stage III Rehab	vilitation			+= <u></u> ,
Action:				
				NR =
Comments:		·····		*****
	~,			
		11.10		

LAX

Building:	Lawndale High School Room: Top	Fluor/Lower Floor
Exterior Noise:	NEF Average Peak Level	
Measured Noise	Reduction (LAX, DEN, BOS, only)	==;;
,,,,,,,,,,,,,,,,,,	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, 70 ft ² to 150 ft ²	50%/100%
Walls	8" concrete or block	ni
Roof	6" concrete	nil
Doors	2" steel, 1st floor only	
Interior Absorpti	on: <u>630</u> Sabins. Predicted Noise Attenuation = 23	
Action: Replace needed. Install	e windows with sealed double glazing. Provide mecho acoustic seals on doors.	nical ventilation as
Stage II Rehabil	itation	
Action: Elimina	te windows. Double acoustical doors or vestibule.	
		NR =
Stage III Rehabil Action:	itation	
		NR =
Comments:		
······································	· · · · · · · · · · · · · · · · · · ·	
	H-20	

LAX

72. F4

LAX

NOISE INSULATION ANALYSIS

 \sim

Eutonian Males.			
Exterior Indise:	NEF	Average Peak Level	78
Measured Noise	Reduction (LAX, DEN,	BOS, only) <u>30, 29.9</u>	
	Analysis of	Existing Noise Insulation	
Component	D	Description	% Total Transmission
Windows	Single glazed		100%
Walls	concrete		nii
Roof		·	nil
<u> </u>		·····	
Interior Absorpt	ion: 125	Sabins.	
	Predicted No	bise Attenuation = 25.7	
Stage 1 Rehabi	litation		
Action: Replac needed.	e window with sealed doul	ble glazing, Provide mecha	nical ventilation as
			NR = <u>37</u>
Stage II Rehabi	litation		NR = <u>37</u>
Stage II Rehabi Action: Elimine	litation ate window and fill space	with concrete or bricks.	NR = <u>37</u>
Stage II Rehabi Action: Elimine	litation ate window and fill space	with concrete or bricks.	NR = <u>37</u>
Stage II Rehabi Action: Elimina Stage III Rehabi	litation ate window and fill space 	with concrete or bricks.	NR = <u>37</u> NR = <u>41</u>
Stage II Rehabi Action: Elimina Stage III Rehabi Action:	litation ate window and fill space litation	with concrete or bricks.	NR = <u>37</u> NR = <u>41</u>
Stage II Rehabi Action: Elimina Stage III Rehabi Action:	litation ate window and fill space 	with concrete or bricks.	NR = <u>37</u> NR = <u>41</u>
Stage II Rehabi Action: Elimina Stage III Rehabi Action:	litation ate window and fill space 	with concrete or bricks.	NR = <u>37</u> NR = <u>41</u>
Stage II Rehabi Action: Elimina Stage III Rehabi Action: Comments:	litation ate window and fill space litation	with concrete or bricks.	NR = <u>37</u> NR = <u>41</u> NR =
Stage II Rehabi Action: Elimin Stage III Rehabi Action: Comments:	litation ate window and fill space litation	with concrete or bricks.	NR = <u>37</u> NR = <u>41</u>

Building:	Imperial Hospital	Room ;	227.224
Exterior Noise	: NEF 34	Average Peak Leve	al <u>70</u>
Measured Noi	se Reduction (LAX, DEN	N, BOS, only) _23.3, 21	1.9
<u></u>	Analysis	of Existing Noise Insulatio	<u>on</u>
Component		Description	% Total Transmission
Windows	<u>∔</u> " glass, 6' x 6'		99%
Walls	9" Brick		1%
Roof	6" concrete, suspende	ad acoustic celling	nil
Interior Absorp		Sabins.	
<u> </u>	Predicted	Noise Attenuation = 24	
Stage 1 Rehal Action: Repla	bilitation ace windows with sealed d	louble glazing. Provide m	echanical ventilation as
needed.			NR = <u>34</u>
Stage II Rehat	oilitation		
Action: Elimi	nate windows. Fill in spo	ace with bricks.	
	······································		NR = _42
Stage III Rehat			
Action:			
			NR =
Comments:			
			<u></u>

LAX

H~22

PHX

NOISE INSULATION ANALYSIS

Building: <u>Gr</u>	ant Elementary School Room:	Classroom
Exterior Noise:	NEF 30 Average Peak Level	82
Measured Noise	Reduction (LAX, DEN, BOS, only)	
	Analysis of Existing Noise Insulation	1
Component	Description	% Total Transmission
Windows	Single glazed, 140 ft ²	78%
Roof	Sheathing & shingle, vented attic, plaster celli	ng 22%
Wall	12" brick	nil
	······································	
·		
Interior Absorption	an: 800 Sabins.	
	Predicted Noise Attenuation = 22	
Stage I Rehabil	itation	
Action: Replace	windows with scaled double glazing. Provide me	chanical ventilation as
incoded.		
		NR = <u>28</u>
Stage II Rehabil	ltation	•••••
Action: Stage I,	, plus acoustically baffle attic vents .	,
		NR = <u>35</u>
L		
Stage III Rehabil	itation	
Action: Elimina	te windows and fill space with bricks. Baffle attic	c vents.
		NR =
Comments:		

PHX

NOISE INSULATION ANALYSIS

Building:	Adeline Gr	ay School	Room:	66	
Exterior Noi	se: NEF	32	Average Peak Level	90	<u></u>
Measured N	oise Reduction	(LAX, DEN,	BOS, only)		
		Analysis of	f Existing Noise Insulation	·····	

Component	Description	% Total Transmission
Windows	Single glazed, 165 ft ²	74%
Walls	12" brick	nil
Doors	2 solid wood, no seals, shielded by porch	23%
Roof	Sheathing & shingles, plaster ceiling, insulated	1%
Interior Absorption	n: 800 Sabins.	
	Predicted Noise Attenuation = 22	
Stage I Rehabilit Action: Replace w needed. Weathers	ation vindows with sealed double glazing. Provide mecha strip exterior doors.	inical ventilation as
		NR =
Stage II Rehabilit	ation	
Action: Eliminate ½" fiberboard, foll	windows and fill space with bricks. Install acousti owed by 5/8" gypsumboard, to ceiling. Apply new	c seals on doors. Glue acoustic tiles to ceiling
		NR = _41
Stage III Rehabilita	ation	
Action:		
		NR =
Comments:		

Building: Line	oin Elementary School Room: Class	room
Exterior Noise:	NEF 36 Average Peak Level	90
Measured Noise	Reduction (LAX, DEN, BOS, only)	, <u>,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,</u>
	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, 180 ft ²	
Walls	8" Brick & 5/8" plaster	1%
Roof	1" sheathing & shingles, plaster ceiling, vented attic	49%
Doors	2 solid wood, no seals, shielded by porch	11%
Interior Absorptio	n: Sabins. Predicted Noise Attenuation =	
Stage I Rehabili Action: Replace needed. Insulate	ation windows with sealed double glazing. Provide mechanic attic and acoustically baffle attic vents. Weatherstrip I	al ventilation as doors. NR = 32
Cinco II Pohobili	ution	
Action: Eliminat acoustic seals on	arion e windows and fill space with bricks. Modify attic as in doors.	n Stage I. Install
		VR = <u>39</u>
Stage III Rehabili	ation	
Action:		
	1	NR =
Comments:	······································	

PHX

Building: Skiff	Elementary School	Room:	Second Floor Classroom
Exterior Noise;	NEF 39	Average Peak Level	94
Measured Noise	Reduction (LAX, DEN,	BOS, only)	
	Analysis of	Existing Noise Insulation	
Component	D	escription	% Total Transmission
Windows	Single glazed, 180 ft ²		64%
Walls	12" concrete block		3%
Roof	1" sheathing & shingles vented attic.	, acoustic tile ceiling,	5%
Door	Solid wood, no seals		28%
Interior Absorptic	on: 800 Predicted No	Sabins.]
Stage I Rehabili Action: Replace needed. Weathe	itation windows with sealed dou rstrip door.	ible glazing, Provide me	chanical ventilation as
			NR = <u>29</u>
Stage II Rehabili	tation	· · · · · · · · · · · · · · · · · · ·	
Action: Eliminat attic vents, Insta	e windows and fill space all acoustic seals on door	with 12" concrete blocks •	. Acoustically baffle
			NR = <u>34</u>
itaae III Rehabili	tation		
Action: Stage II. Exterior walls. A	, plus cement ½" fiberboc Alternate wall modificatio	ard followed by 5/8" gyps on is to add stud framing,	umboard to interior of insulation and gypsum-
vote to existing	¥4 (1 1 1 2 4		NR = 40
Composite Ford	first floor classmons NR i	is within 1dB of these valu	

РНХ

٩

Building: V	Vilson Hawk	ins Elementary S	School	Room:	Second Flo	or Classrooms
Exterior Noise	. NEF	40	Averag	e Peak Level		<u>72</u>
Measured Noi:	se Reduction	(LAX, DEN,	BOS, only)	•		
		Analysis of	Existing No	ise Insulation		
Component		De	escription		% Tot	al Transmission
Windows	Single g	lozed, 180 ft ²				66%
Walls	Brick					nil
Roof	1" sheat	hing & shingles,	, ac. tile ce	iling vented a	attic	5%
Door	Solid wo	ood, no seals				29%
Interior Absorp	otion:	800 Predicted No	Sabins	ion = 21]	
Stage I Rehal Action: Repla needed. Weat	oilitation ace windows herstrip doo	with sealed dou r.	ıbl e glazing	. Provide me	chanical ve	entilation as
					NR =	
Stage II Rehab	vilitation					
Action: Elimin Install acoustic	nate window seals on do	s and fill space or .	with bricks.	Acoustically	v baffle atti	c vents.
				· •	NR =	40
Stage III Rehab	ilitation					
Action:						
					NR =	
Commonte: 5-		cohool ouront	alls are h-t	the instand of t	Josk N	o shat but ale
		school except w	diffeetter	IN INSTERIO OF C		

PHX

H--27

PHX

NOISE INSULATION ANALYSIS

Building: Dunbar Eleme	ntary School		Room :	Classroom
Exterior Noise : NEF	30	Average Peo	sk Level	83
Measured Noise Reductio	n (LAX, DEN,	BOS, only)	<u> </u>	
	Analysis of	Existing Noise I	nsulation	
Component	De	escription		% Total Transmission
Windows Single	glazed, 135 ft ²			77%
Walls 15" bri	ck, plaster interi	ior		nil
Roof 7/8" sh vented	eathing, ashetop & insulated attic	shingles, plaste space	r coating	22%
		······································		
Interior Absorption;	630	Sabins.		
	Predicted No	ise Attenuation =	= 22	
Stage I Rehabilitation				
Action: Replace windows needed. Acoustically baf	with sealed dou fle attic vents.	ble glazing. Pro	vide med	hanical ventilation as
				NR = <u>34</u>
Stage II Rehabilitation				
Action: Eliminate window	vs and fill space	with bricks. Baf	fle attic	vents.
				NR = _40
Stage III Rehabilitation				
Action:				
				NR =
Comments:				
	· · ·		<u></u> ,	

Building: <u>Silva</u>	astre Herrera Elementary SchoolRoom:			
Exterior Noise:	NEF36 Average Peak Level	93		
Measured Noise	Reduction (LAX, DEN, BOS, only)	•= = = • • • • • • • • • • • • • • • • •		
	Analysis of Existing Noise Insulation			
Component	Description	% Total Transmission		
Windows	Single glazed, 155 ft ²	36%		
Walls	4" brick & 4"_concrete block	nil		
Roof	<u>Steel joists, sheathing & comp. shingles, acoustic</u> tiles on plaster ceiling, vented attic.	63%		
Interior Absorptio	90; <u>800</u> Sabins.			
} 	Predicted Noise Attenuation = 19			
Stage I Rehabili	tation			
Action: Acoustic Provide mechanic	cally baffle attic vents. Replace windows with sealed al ventilation as needed.	double glazing.		
		NR = <u>33</u>		
Stage II Rehabili	tation	······		
Action: Eliminate Windows and fill space with bricks. Insulate attic and baffle attic vents.				
		NR ≈ <u>40</u>		
Stage 111 Rehabilifation				
Action:				
		NR =		
Comments:		······································		
. <u></u>	·····			

РНХ

Building: <u>Ann</u>	Ott_(Stevenson)_School Room:	assroom
Exterior Noise:	NEF40 Average Peak Level	.92
Measured Noise	Reduction (LAX, DEN, BOS, only)	
	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, 200 ft ²	72%
Walls	Brick and plaster	nil
Doors	2 wood with windowpanels, unsealed	19%
<u>Roof</u>	Sheathing & composition shingles, ac. tile ceiling, vented attic space.	9%
Interior Absorptic	n: Sabins.	
Stage I Rehabili Action: Replace needed. Weathe	tation windows with sealed double glazing, Provide mechar rstrip doors.	nical ventilation as
	-	NR =
Stage II Rehabili	ation	
Action: Stage 1,	plus insulate attic and acoustically baffle attic vents.	
		NR =
Stage 111 Rehabilit	ation	
Action: Eliminate with acoustic seals	windows and fill space with bricks. Replace doors w s. Insulate attic & baffle vents.	ith 1 3/4" solid wood
		NR =
Comments:		

PHX

Building: Ari	zona Children's Hospital Room;	Patient Rooms
Exterior Noise	: NEF Average Peak Level	
Measured Nois	e Reduction (LAX, DEN, BOS, only)	425
	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, 45 ft ²	100%
Walls	Brick, block & grout, 10" tatal	nil
Roof	3" concrete, insulation, plaster ceiling	nil
	······································	
Interior Absorpt	tion: <u>125</u> Sabins.	
	Predicted Noise Attenuation = 19	
Store I Bahahi	litation	
Action: Replac needed.	ce windows with sealed double glazing. Provide mea	hanical ventilation as
		NR = <u>31</u>
Stage II Rehabi	litation	,
Action: Elimin	ate windows and fill space with bricks.	
		NR = _41
Stage III Rehabi	litation	· · · · · · · · · · · · · · · · · · ·
Action:		
		NIP =
Commonte		140/-
	LI 01	

РНХ

Building: <u>Ariz</u>	ona State Hospital	Room: F	Patient Room
Exterior Noise:	NEF	Average Peak Level	65
Measured Noise	Reduction (LAX, DEN,	BOS, only)	
	Analysis of	Existing Noise Insulation	
Component	C	Description	% Total Transmission
Windows	2 sealed 1/ glass, 5" x	8'	8%
Walls	10" brick		nil
Roof	10" concrete, plus insu	lation, roofing & plaster	nil
Door	Wood or metal, no seal	5	92%
Interior Absorptic	on: <u>125</u>	Sabins.	
	Predicted No	bise Attenuation = 18	
Stage I Rehabili	tation	<u> </u>	
Action: Weather	strip door.		
			NR =
Stage II Rehabili	tation	, , , , , , , , , , , , , , , , , , ,	······
Action: Replace	doors with 1 3/4" solid (core wood with acoustic se	als.
			NR = <u>28</u>
Stage III Rehabili Action: Stage II	tation , plus either double glaz	e windows or eliminate and	fill with brick .
			NR = _35
Comments: Nois	e reduction of 42 possibl	e if eliminate windows and	install acoustic double
doors or entrance	vestibule with acoustical	ly sealed solid core-doors.	

H-32

PHX

Building: Dun	bar Elementary School	Room:	Classroom
Exterior Noise:	NEF36 Averag	je Peak Level	83
Measured Noise	Reduction (LAX, DEN, BOS, only)	,	F##
	Analysis of Existing No	oise Insulation	
Component	Description	. <u></u>	% Total Transmission
Windows	jalousia, 2" air gap, plastic. 170	ft ²	29%
Walls	8" concrete block with ½" stucco		35%
Roof	6" concrete slab, acoustic tile cei	ling	3%
Door	Solid wood weatherstripped	<u>-</u>	34%
Interior Absorptic		•	
1	Predicted Noise Attenua	ntion = 29]
Stage I Rehabili Action: Eliminat gypsumboard to is	tation e windows and fill space with 8" blo nterior of exterior walls . Install aco	ock. Cement s	" fiberboard, then 5/8" door.
			NR = <u>40</u>
Stage II Rehabili	tation		
Action:			
		Berler an was nabed die Ster is die sterren v	NR =
Stage III Rehabili	tation		
Action:			
			NR =
Comments: Roof	transmission negligible, so first and	second floor N	IR the same. Existing
structure is a wel	l balanced acoustic design — door a	nd window tran	smission are just comparable
to wall.	<u></u>		

MIA

Building: <u>Citru</u>	s Grove El	ementary school		
Exterior Noise:	NEF	35	Average Peak Level	79
Measured Noise	a Reduction	n (LAX, DEN, E	BOS, only)	
		Analysis of I	Existing Noise Insulation	
Component	<u> </u>	De	scription	% Total Transmission
Windows	Jalousi	e, 210 ft ²		81%
Doors	2 solid	wood, no seals	<u></u>	15%
Walls	8" conc	rete block	<u></u>	2%
Roof	<u>4" conc</u>	crete slab		2%
Interior Absorpt	ion:	1600	Sabins.	
			······································	
		Predicted Noi	se Attenuation = 18	
Stage I Rehabi Action: Replac needed, Weath	litation e windows erstrip doo	Predicted Noi	se Attenuation = 18	anical ventilation as
Stage I Rehabi Action: Replac needed, Weath	litation e windows erstrip doo	Predicted Noi with sealed doub	se Attenuation = 18	anical ventilation as NR = <u>29</u>
Stage I Rehabi Action: Replac needed. Weath Stage II Rehabi	litation e windows enstrip doo litation	Predicted Noi with sealed doub	se Attenuation = 18	anical ventilation as NR = <u>29</u>
Stage I Rehabi Action: Replac needed. Weath Stage II Rehabi Action: Elimina walls. Cement	litation e windows erstrip doo litation ste window 5/8" gypsu	Predicted Noi with sealed doub prs. /s and fill space v imboard, then ne	se Attenuation = 18 le glazing. Provide mecha with concrete block and ac w acoustic tiles, over exist	anical ventilation as NR = <u>29</u> oustic tiles to match ting tiles on walls and
Stage I Rehabi Action: Replac needed. Weath Stage II Rehabi Action: Elimina valls. Cement ceiling. Install	litation e windows erstrip doo litation ste window 5/8" gypsu acoustic se	Predicted Noi with sealed doub ors. //s and fill space v /mboard, then ne eals on doors.	se Attenuation = 18 ble glazing. Provide mecha with concrete block and ac w acoustic tiles, over exist	oustic tiles to match NR = <u>29</u> oustic tiles to match ting tiles on walls and NR = <u>40</u>
Stage I Rehabi Action: Replac needed. Weath Stage II Rehabi Action: Elimina walls. Cement ceiling. Install	litation e windows erstrip doo litation ste window 5/8" gypsu acoustic se litation	Predicted Noi with sealed doub ors. //s and fill space v /mboard, then ne eals on doors.	se Attenuation = 18 ble glazing. Provide mecha with concrete block and ac w acoustic tiles, over exist	anical ventilation as NR = <u>29</u> oustic tiles to match ting tiles on walls and NR = <u>40</u>
Stage I Rehabi Action: Replac needed. Weath Stage II Rehabi Action: Elimina walls. Cement ceiling. Install Stage III Rehabi Action:	litation e windows erstrip doo litation ate window 5/8" gypsu acoustic se litation	Predicted Noi with sealed doub ms. /s and fill space with mboard, then ner eals on doors.	se Attenuation = 18 ble glazing. Provide mecha with concrete block and ac w acoustic tiles, over exist	anical ventilation as NR = <u>29</u> oustic tiles to match ting tiles on walls and NR = <u>40</u>
Stage I Rehabi Action: Replac needed. Weath Stage II Rehabi Action: Elimina walls. Cement ceiling. Install Stage III Rehabi Action:	litation e windows erstrip doo litation ate window 5/8" gypsu acoustic se litation	Predicted Noi with sealed doub ors. //s and fill space v imboard, then ne eals on doors.	se Attenuation = 18 ble glazing. Provide mecha with concrete block and ac w acoustic tiles, over exist	oustic tiles to match ting tiles on walls and NR =

MIA

MIA

NOISE INSULATION ANALYSIS

Building: Weat	ey Elementary School Room:	Classroom
Exterior Noise:	NEF 35 Average Peak Lev	el <u>85</u>
Measured Noise	Reduction (LAX, DEN, BOS, only)	******
	Analysis of Existing Noise Insulati	on
Component	Description	% Total Transmission
Windows	Single glazed, 210 ft ²	59%
Door	Solid wood, no seals	37%
Walls	8" concrete block & stucco	1%
Roof	6" concrete slab	2%
Interior Absorptio	n: Sabins.	
<u></u>	Predicted Noise Attenuation = 22	
Stage I Rehabili	tation	
Action: Replace needed. Install a	windows with scaled double glazing. Provide r coustic scals in door.	nechanical ventilation as
		NR =
Stage II Rehabili	tation	
Action: Eliminate 5/8" gypsumboard with acoustic doul	e windows and fill space with concrete block. , to ceiling and walls. Install new acoustic til ble doors or vestibule.	Cement $\frac{1}{2}$ " fiberboard, then es on ceiling. Replace door
		NR =
Stage III Rehabili	ation	
Action:		
		NR =
Comments: Ceil	ng treatment not needed in first story rooms of	2 story sections,

Building: <u>Boo</u> k	er_T. Washington School Room: 3rd	Story Classroom	
Exterior Noise:	NEF 35 Average Peak Level	83	
Measured Noise	Reduction (LAX, DEN, BOS, only)		
[Analysis of Existing Noise Insulation		
Component		% Total Transmission	
Windows	Single glazed, 230 ft ²	9 5%	
Walls	8" concrete block & stucco, ½" plaster	2%	
Roof	6" concrete slab	3%	
		·	
		·····	
Interior Absorptic	n: 800 Sabins.		
	Predicted Noise Attenuation = 21		
Stage I Rehabili	tation		
Action: Replace	windows with sealed double glazing. Provide mech	anical ventilation as	
		NR = <u>31</u>	
Stage II Rehabili	tation		
Action: Eliminate	windows and fill to match walls.		
		NR = <u>34</u>	
Stage III Rehabilit	ation		
Action: Stage II, plus treat walls and ceiling with $\frac{1}{2}$ " fiberboard and 5/8" gypsumboard cemented in place. Replace acoustic tiles on ceiling.			
		NR = _44	
Comments: On f	irst and second floors, Stage I NR = 32 , Stage II NR	= 37, Stage III NR = 47	

MIA

ų,

Building: <u>Auburnda</u>	le Elementary School		lassroom	
Exterior Noise: NEF	30	Average Peak Level	75	
Measured Noise Reduc	ction (LAX, DEN,	BOS, only)		
	Analysis of	Existing Noise Insulation	<u></u>	~

Component	Description	% Total Transmission
Windows	Single glazed, 170 ft ²	8.2%
Walls	8" adobe brick, 8" concrete block	nil
Reof	1" planks, built up roofing, acoustic ceiling	10.2%
Doors	2 solid wood, no seals	7.7%
Vents	60 ft ² open louvered vents, below roof overhang	73.2%
AC Unit Interior Absor	6 ft ² opening ption:630Sabins.	0.6%

Predicted Noise Attenuation =

11

Stage I Rehabilitation

....

Action: Either eliminate louvered vents or construct acoustical baffles. Baffles must be constructed on both the inside and the outside. Provide mechanical ventilation as needed.

NR≈ 17

Stage II Rehabilitation

Action: Stage I, plus replace windows with sealed double glazing, install clay tiles on roof, replace tile ceiling with $\frac{1}{2}"$ gypsumboard and new acoustic tiles, install acoustic seals on doors, and acoustically baffle AC unit.

NR≈ 30

Stage III Rehabilitation

Action: Stage II, except for window modification. Eliminate windows and fill space with brick. Install insulation in roof.

NR≈ 35

Comments;

H-37

MIA

Exterior Nolse: NEF 38 Average Peak Level 84 Measured Noise Reduction (LAX, DEN, BOS, only)	Building:	Kensington	Elementary S	ichool	Room: _	Classroom	
Measured Noise Reduction (LAX, DEN, BOS, only)	Exterior Noise:		38	Average Peo	sk Level	·	84
Analysis of Existing Noise Insulation Component Description % Total Transmission Windows Single glazed, 170 ft ² 7.4% Door Solid wood, weatherstripped 2.0% Vents 3' x 28' louvered vent below roof overhang 91.2% Roof 6" concrete slab 0.2% Walls 8" block & ½" stucco 1.7% Interior Absorption: 630 Sobins. Predicted Noise Attenuation = 11 Stage I Rehabilitation Action: Either eliminate vents or acoustically baffle. Baffles must be constructed both inside and outside. Provide mechanical ventilation as needed. NR = _21 Stage II Rehabilitation Action: Stage I, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = _30 NR = _30 Stage III Rehabilitation Action: Stage I, plus acoustic seals on doors. Eliminate windows and fill space with block. Gement ½" fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = _37	Measured Noise	Reduction	(LAX, DEN,	, BOS, only)		18 er 44	
Component Description % Total Transmission Windows Single glazed, 170 fr ² 7.4% Door Solid wood, weatherstripped 2.0% Vents 3' x 28' louvered vent below roof overhang 91.2% Roof 6" concrete slab 0.2% Walls 8" block & ½" stucco 1.7% Interior Absorption: 630 Sabins. Predicted Noise Attenuation = 11 Stage I Rehabilitation Action: Either eliminate vents or acoustically baffle. Baffles must be constructed both inside and outside. Provide mechanical ventilation as needed. NR = _21 Stage I, Rehabilitation Action: Stage I, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = _30 NR = _30 Stage II Rehabilitation Action: Stage I, plus acoustic seals on doors. Eliminate windows and fill space with block. Cament ½" fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = _39		<u> </u>	Analysis o	f Existing Noise Ir	sulation		
Windows Single glazed, 170 ft ² 7.4% Door Solid wood, weatherstripped 2.0% Vents 3' x 28' louvered vent below roof overhang 91.2% Roof 6" concrete slab 0.2% Walls 8" block & ½" stucco 1.7% Interior Absorption: 630 Sabins. Predicted Noise Attenuation = 11 Stage 1 Rehabilitation Action: Either eliminate vents or acoustically baffle. Baffles must be constructed both inside and outside. Provide mechanical ventilation as needed. NR = _21 Stage 11 Rehabilitation Action: Stage 1, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = _30 Stage 111 Rehabilitation Action: Stage 1, plus acoustic seals on doors. Eliminate windows and fill space with block. Cament ½" fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = _39	Component		[Description		<u>% To</u>	tal Transmission
Door Solid wood, weatherstripped 2.0% Yents 3' x 28' louvered vent below roof overhang 91.2% Roof 6" concrete slab 0.2% Walls 8" block & ½" stucco 1.7% Interior Absorption: 630 Sabins. Predicted Noise Attenuation = 11 Stage 1 Rehabilitation Action: Either eliminate vents or acoustically baffle. Baffles must be constructed both inside and outside. Provide mechanical ventilation as needed. NR = 21 Stage 11 Rehabilitation Action: Stage 1, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = 30 Stage 11 Rehabilitation Action: Stage 1, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = 30 Stage 11 Rehabilitation Action: Stage 1, plus acoustic seals on doors. Eliminate windows and fill space with block. Gement ½" fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = 39 Comments:	Windows	Single gl	azed, 170 ft^2				7.4%
Vents 3' x 28' louvered vent below roof overhang 91.2% Roof 6" concrete slab 0.2% Walls 8" block & ½" stucco 1.7% Interior Absorption: 630 Sabins. Predicted Nolse Attenuation = 11 Stage I Rehabilitation Action: Either eliminate vents or acoustically baffle. Baffles must be constructed both inside and outside. Provide mechanical ventilation as needed. NR = 21 Stage II Rehabilitation Action: Stage I, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = 30 Stage III Rehabilitation Action: Stage I, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = 30 Stage III Rehabilitation Action: Stage I, plus acoustic seals on doors. Eliminate windows and fill space with block. Gement ½" fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = 37 Comments: 37	Door	Solid woo	od, weatherst	ripped			2.0%
Roof 6" concrete slab 0.2% Walls 8" block & ½" stucco 1.7% Interior Absorption: 630 Sabins. Predicted Noise Attenuation = 11 Stage 1 Rehabilitation Action: Either eliminate vents or acoustically baffle. Baffles must be constructed both inside and outside. Provide mechanical ventilation as needed. NR = _21 Stage 11 Rehabilitation Action: Stage 1, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = _30	Vents	3' x 28'	ouvered vent	below roof overho	ing		91.2%
Walls 8" block & ½" stucco 1.7% Interior Absorption: 630 Sabins. Predicted Nolse Attenuation = 11 Stage I Rehabilitation Action: Either eliminate vents or acoustically baffle. Baffles must be constructed both inside and outside. Provide mechanical ventilation as needed. NR = 21 Stage II Rehabilitation Action: Stage I, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = 30 Stage III Rehabilitation Action: Stage I, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = 30 Stage III Rehabilitation Action: Stage I, plus acoustic seals on doors. Eliminate windows and fill space with block. Gement ½" fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = 39 Comments:	Roof	6" concre	ete slab				0.2%
Interior Absorption:	Walls	8" block	& ½" stucco				1.7%
Stage 1 Rehabilitation Action: Either eliminate vents or acoustically baffle. Baffles must be constructed both inside and outside. Provide mechanical ventilation as needed. NR =	Interior Absorpt	on;	630 Predicted N	Sabins.	= <u> </u>]	
NR = _21	Stage I Rehabi Action: Either side and outside	litation eliminate ve • Provide m	ents or acousti echanical ve	ically baffle. Baf ntilation as neede	fles must	be constru	cted both in-
Stage II Rehabilitation Action: Stage I, plus replace windows with sealed double glazing and install acoustic seals on doors. NR =						NR =	21
Action: Stage I, plus replace windows with sealed double glazing and install acoustic seals on doors. NR = 30 Stage III Rehabilitation Action: Action: Stage I, plus acoustic seals on doors. Eliminate windows and fill space with block. Cement ½" fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = Omments:	Stage II Rehabil	itation .		······]
NR =	Action: Stage I on doors.	, plus repla	ce windows w	ith sealed double	glazing a	and install	acoustic seals
Stage III Rehabilitation Action: Stage 1, plus acoustic seals on doors. Eliminate windows and fill space with block. Cement $\frac{1}{2}$ " fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = <u>39</u> Comments:						NR =	30
Action: Stage 1, plus acoustic seals on doors. Eliminate windows and fill space with block. Cement $\frac{1}{2}$ " fiberboard and 5/8" gypsumboard to interior of exterior walls and ceiling. NR = <u>39</u> Comments:	Stage III Rehabil	itation					
NR = <u>39</u>	Action: Stage I, Cement $\frac{1}{2}$ " fiberb	, plus acous oard and 5/	tic seals on de 8" gypsumbod	oors. Eliminate w ard to interior of e	indows a xterior w	nd fill space alls and ce	e with block. iling.
Comments:						NR =	39
	Comments:						

MIA

Building: Buena Vista Elementary Scho	ool Room	; Classroom
Exterior Noise: NEF40	Average Peak Le	vel85
Measured Noise Reduction (LAX, DEN	I, BOS, only)	
Analysis	of Existing Noise Insulat	ion
Component	Description	% Total Transmission
Windows Single glazed, 160 ft	2	98%
Walls <u>8" block & stucco</u> , <u>1</u>	" plaster	2%
Roof <u>6" concrete slab, pla</u>	ster ceiling	nii
Interior Absorption;630	Sabins.	
Predicted I	Noise Attenuation = 2	2
Stage 1 Rehabilitation	<u></u>	· · · · · · · · · · · · · · · · · · ·
Action: Replace windows with sealed d needed.	ouble glazing, Provide	mechanical ventilation as
		NR =
Stage II Rehabilitation		
Action: Eliminate windows and fill space	e with block, stucco an	d plaster to match walls.
		NR = <u>36</u>
Stage III Rehabilitation		
Action: Stage II, plus cement ½" fiber walls.	oard and 5/8" gypsumbo	ard to interior of exterior
		NR =
Comments:		······································
<u></u>		

H-39

міа

Component	Descr 2	iption	% Total Transmission
	Analysis of Exis	ting Noise Insulation	
Measured Noise Reduct	ion (LAX, DEN, BO	S, only)	
Exterior Noise: NEF	40	Average Peak Level	86
Building: <u>Robert E. L</u>	ee Junior High School	Room;	Top Story Classroom

Single glazed, 160 ft ^e	7704
Single glazed, 67 ft ² , shielded by ha	
2 solid wood, no seals, shielded by he	ail <u>8%</u>
3' x 3' opening	9%
8" block & 3" stucco	2%
6" concrete slab n:630Sabins.	2%
-	Single glazed, 100 m Single glazed, 67 ft ² , shielded by ha 2 solid wood, no seals, shielded by ha 3' x 3' opening 8" block & ‡" stucco 6" concrete slab b:

Predicted Noise Attenuation = 21

Stage 1 Rehabilitation

Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.

NR = 26

Stage II Rehabilitation

Action: Stage I, plus weatherstrip doors and eliminate or acoustically baffle window AC units.

NR = 31

Stage III Rehabilitation

Action: Eliminate windows and fill space with block. Install acoustic seals on doors. Cement $\frac{1}{2}$ " fiberboard, then 5/8" gypsumboard, to interior of exterior walls and ceiling.

NR = 42

Comments: NR in lower stories almost the same. Ceiling treatment not needed in lower stories.

H-40

MIA

Exterior Noise: NEF38 Average Peak Level	0/
	00
Measured Noise Reduction (LAX, DEN, BOS, only)	alt (11) (12)
Analysis of Existing Noise Insulation	······································
Component Description	% Total Transmission
Windows Single glazed, 20 ft ²	99%
Walls 8" concrete plus brick	1%
Roof 6" concrete	See Comment
Interior Absorption: 250 Sabins.	
Predicted Noise Attenuation = 27	
Stage I Rehabilitation Action: Replace windows with sealed double glazing. Provide mechan needed.	nical ventilation as
·	NR = <u>38</u>
Stage II Rehabilitation	
Action: Eliminate windows and fill space with concrete and brick.	
	NR = <u>45</u>
Stage III Rehabilitation	
Action:	
	NR =
Comments: On top floor, Stage Land Stage II NR = 36, due to transm	nission through roof.
Stage II must therefore include cementing $\frac{1}{2}$ " soundboard and 5/8" gyp	sumboard to ceiling in
top story.	

MIA

MIA

NOISE INSULATION ANALYSIS

Building: <u>Pan</u>	American Hospital Room:	Patient Room
Exterior Noise:	NEF Average Peak Level	78
Measured Noise	Reduction (LAX, DEN, BOS, only)	
	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, 38 ft ²	
AC Unit	2' x 3' opening	23%
Walls	8" block and stucco, ½" plaster	2%
Roof	6" concrete slab	2%
	1 1	
Interior Absorptio	on: 200 Sabins.	
	Predicted Noise Attenuation = 22]
Stage 1 Rehabili	itation]
Action: Replace	windows with sealed double glazing. Eliminate of Provide mechanical ventilation as needed.	r acoustically baffle air
		NR = <u>32</u>
Stage II Rehabili	tation	
Action: Eliminat Cement ½" fiberb same to ceiling o	e windows and fill space with block. Eliminate or oard followed by 5/8" gypsumboard to interior of e n top floor, and replace acoustic tiles.	baffle AC units. xterior walls. Apply
	·····	NR = <u>39</u>
Stage III Rehabili	tation	
Action:		
		NR =
Comments:		
·		

Building: <u>Winthrop Community Hospital</u> Room:	319
Exterior Noise: NEF 38 Average Peak Leve	88
Measured Noise Reduction (LAX, DEN, BOS, only)	21.7
Analysis of Existing Noise Insulatio	<u>n</u>
Component Description	% Total Transmission
Windows Single glazed, 108 ft ²	99%
Walls 9" brick and plaster	1%
Roof 6" concrete, gypsumboard ceiling	
ан са на	
· · · · · · · · · · · · · · · · · · ·	
Interior Absorption: 430 Sabins.	
Predicted Noise Attenuation = 22	
Stage 1 Rehabilitation	
Action: Replace windows with sealed double glazing. Provide mineeded.	echanical ventilation as
	NR =
Stage II Rehabilitation	•••••••••••••••••••••••••••••••••••••••
Action: Eliminate windows and fill space with brick and plaster.	2
	NR = _42
Stace III Rehabilitation	
Action:	
· ·	NR =
Comments:	
· · · · · · · · · · · · · · · · · · ·	
H-43	

BOS

Exterior Noise: NEF 38 Average Peak Level 88 Measured Noise Reduction (LAX, DEN, BOS, only) 28.8 Analysis of Existing Noise Insulation Component Description % Total T Windows Single glazed, 18 ft ² 97 Walls 9" brick & plaster 97 Roof 6" concrete, acoustic tile ceiling 11 Interior Absorption: 250 Sabins. Predicted Noise Attenuation = 28 Stage 1 Rehabilitation Action: Replace windows with sealed double glazing. Provide mechanical ventile reeded. NR = 37 Stage 11 Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	
Measured Noise Reduction (LAX, DEN, BOS, only) 28.8 Analysis of Existing Noise Insulation Component Description Windows Single glazed, 18 ft ² Walls 9" brick & plaster Roof 6" concrete, acoustic tile ceiling Interior Absorption: 250 Stage I Rehabilitation Action: Replace windows with sealed double glazing. Predicted Noise Attenuation = 28 Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	
Analysis of Existing Noise Insulation Component Description % Total T Windows Single glazed, 18 ft ² ?? Walls 9" brick & plaster ?? Roof 6" concrete, acoustic tile ceiling ni Interior Absorption: 250 Sabins. Predicted Noise Attenuation = 28 Stage I Rehabilitation NR = _37 Stage II Rehabilitation NR = _37 Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	······································
Component Description % Total T Windows Single glazed, 18 ft ² 2 Walls 9" brick & plaster 2 Roof 6" concrete, acoustic tile ceiling ni Interior Absorption: 250 Sabins. Predicted Noise Attenuation = 28 Stage I Rehabilitation NR = 37 Action: Replace windows with sealed double glazing. Provide mechanical ventile mechanical ventile Stage II Rehabilitation NR = 37 Stage II Rehabilitation NR = 37	
Windows Single glazed, 18 ft ² 97 Walls 9" brick & plaster 97 Roof 6" concrete, acoustic tile ceiling ni Roof 6" concrete, acoustic tile ceiling ni Interior Absorption: 250 Sabins. Predicted Noise Attenuation = 28 Stage I Rehabilitation Action: Replace windows with sealed double glazing. NR = 37 Stage II Rehabilitation NR = 37 Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	ansmission
Walls 9" brick & plaster Roof 6" concrete, acoustic tile ceiling ni Roof 6" concrete, acoustic tile ceiling ni Interior Absorption: 250 Sabins. Predicted Noise Attenuation = 28 Stage I Rehabilitation Replace windows with sealed double glazing. Provide mechanical ventile needed. NR = 37 Stage II Rehabilitation NR = Action: Eliminate windows and fill space with brick and plaster.	%
Roof 6" concrete, acoustic tile ceiling ni Interior Absorption: 250 Sabins. Predicted Noise Attenuation = 28 Stage I Rehabilitation 28 Action: Replace windows with scaled double glazing. Provide mechanical ventile NR =37 Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	%
Interior Absorption:250Sabins. Predicted Noise Attenuation = 28 Stage I Rehabilitation Action: Replace windows with sealed double glazing. Provide mechanical ventile neededNR =37 Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	<u></u>
Predicted Noise Attenuation = 28 Stage I Rehabilitation Action: Replace windows with sealed double glazing. Provide mechanical ventile needed. NR = <u>37</u> Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	
Stage I Rehabilitation Action: Replace windows with sealed double glazing. Provide mechanical ventile needed. NR = 37 Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	
Action: Replace windows with sealed double glazing. Provide mechanical ventile needed. NR = <u>37</u> Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	
NR = <u>37</u> Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	tion as
Stage II Rehabilitation Action: Eliminate windows and fill space with brick and plaster.	
Action: Eliminate windows and fill space with brick and plaster.	
	. '
NR = <u>42</u>	
itage III Rehabilitation	
Action:	
NR =	

BOS
Bullding, Wis	heen huite	Wale Salaal		Room	206
Fut-ufes Mater	NCC				
Exterior Noise:	INEr	36	Average Peo	ak Level	84
Measured Noise	Reduction	(LAX, DEN, B	105, only)	23	3.8
		Analysis of E	xisting Noise I	sulation	
Component		De	scription		% Total Transmission
Windows	Plastic gl	lazing, 12.5 ft ²			74%
Window Panels	2 layers p	plastic, 3" ainp	ace. 55 ft^2		20%
Walls	4" brick,	4" block, 2" w	rood com		5%
Roof	6" concre	ete, gypsumboar	d ceiling	<u> </u>	li
Interior Absorptic	on:	500	Sabins.		
	· · · · · · · · · · · · · · · · · · ·	Predicted Noi	se Attenuation =	- 28	، د
Stage I Rehabil	itation			····	·
Action: Replace	windows v	vith sealed doub	le glazing, Pro	ovide mecha	inical ventilation as
			·		NR = <u>36</u>
Stage II Rehabili	Itation				
Action: Elimina wall construction	te windows •	and window pa	nels. Fill space	e with brick	and block similar to
	-				NR = <u>42</u>
Stage III Rehabili	tation				
Action:					
					NR =
Comments:			····		
а С					

BOS

Building: <u>Wint</u>	hrop Junior High School	Room:	220
Exterior Noise:	NEF 36 Average	Peak Level	
Measured Noise	Reduction (LAX, DEN, BOS, only)	20	0.0
	Analysis of Existing Noise	e Insulation	· /
Component	Description		% Total Transmission
Windows	Plastic glazing, 31 ft ²	<u></u>	73%
Window Panels	2 layers plastic, 3" airspace, 135 ft ²		20%
Walls.	4" brick, 4" block, 2" wood core		6%
Ceiling	6" concrete, gypsumboard ceiling		nil
Interior Absorptic	on: Sabins.		
· · · · ·	Predicted Noise Attenuatio	on ≖ 25	
Stage I Rehabili	itation		
Action: Replace needed.	windows with sealed double glazing.	Provide mech	anical ventilation as
			NR = <u>33</u>
Stage II Rehabili	tation		
Action: Eliminat wall construction .	e windows and window panels. Fill sp	ace with brick	< and block similar to
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			NR = <u>39</u>
Stage III Rehabili	tation]
Action:			
			NR =
Comments:	······································		
			······································

BOS

1

Building: <u>Juli</u>	ia Ward Hov	we School		Room:	First Floor		_
Exterior Noise:		40	Average	Peak Level		92	.
Measured Noise	Reduction	(LAX, DEN,	BOS, only)	21.6, 25,	0		-
		Analysis of	Existing Nois	e Insulation	·	·····	7
Component	_	De	escription		% Tot	al Transmission	
Windows	Single gl	zed, 160 ft ²				87%	
Walls	Wood sid	ng, plaster int	eriors, frame	construction	-	13%	_
	<u> </u>				<u></u>		-
			····			·	4
					<u> </u>	·····	4
Interior Absorption	on:	630	Sabins.				1
		Predicted No	ise Attenuatio	on = 22			4;
Stage I Rehabil	itation						1
Action: Replace needed.	windows w	ith sealed doul	le glazing.	Provide mec	anical ve	ntilation as	
	•••••				NR =		
Stage II Rehabili	Itation	·····					
Action: Replace resiliently mounte	windows as ad on new 2	in Stage 1. 1 × 4 framing w	nstall ½" gyps ith insulation	umboard on 1 In stud space	nterior of 9.	exterior walls,	
					NR =	33	
Stage III Rehabili	tation						
Action: Stage II,	, plus elimi	nate windows c	and fill space	with same as	wall cons	truction.	
						10	
Commantes c-l-	ulations for	5 utadau al	Carrier Carrier	Laus stars	- 781	+0	
not aiven, hut an	naar to be	ame total ama	from photos	nave six smo		ews, dimensions	
Surally pol ab			THOU PRODUGI	abiin 1			

ßÖS

Building: <u>Julia Ward Howe School</u> Room: <u>S</u>	econd Eloor
Exterior Noise: NEF40 Average Peak Level	
Measured Noise Reduction (LAX, DEN, BOS, only)	==
Analysis of Existing Noise Insulation	
Component Description	% Total Transmission
Windows Same as first floor	35%
Walls	5%
Roof Wood & shingle roof, plaster ceiling, vented attic	59%
Interior Absorption: 630 Sabins.	
Predicted Noise Attenuation = 18	
Stage I Rehabilitation	
Action: Insulate attic and acoustically baffle vents, plus Stage I of fi	rst floor.
	NR = _ 27
Stage II Rehabilitation	
Action: Attic improvements as in Stage I, plus Stage II of first floor.	
	NR =
Stage III Rehabilitation]
Action: Attic improvements as in Stage I, plus Stage 111 of firts floor.	
	NR =
Comments:	

BOS

Building: <u>G</u>	nfield Ju	nior High Schoo	bl	Room:	Classroom
Exterior Noise:	NEF	40	Average Pec	sk Level	90
Measured Noise	Reduction	(LAX, DEN,	BOS, only)		######
		Analysis of	Existing Noise In	sulation	
Component	·	C	Description		% Total Transmission
Windows	Single g	lazed, 180 ft ²			100%
Walls	<u>12" × 1</u>	4" Brick, gyp &	plaster on 2 x 4	studs	nil
Roof	1" plan	<s 24"="" joists,<="" on="" td=""><td>, gyp & plaster ce</td><td>iling</td><td><u>nil</u></td></s>	, gyp & plaster ce	iling	<u>nil</u>
Interior Absorption		630	Sabins.		· · · · · · · · · · · · · · · · · · ·
		Predicted No	oise Attenuation =	22	· · · · · · · · · · · · · · · · · · ·
Stage I Rehabil	itation				
Action: Replace needed.	windows	with sealed dou	uble glazing. Pro	vide meci	nanical ventilation as
					NR = <u>34</u>
Stage II Rehabili	tation			*	
Action: Eliminal between roof and	e window. ceiling.	s and fill space	with same as exte	erior wall	Add insulation
					NR = <u>45</u>
Stage III Pehabili	tation	····		·····	
Action:	1411011				
~~~, TOR;					
					NR =
Comments:		·····			
·····					
			<u></u> _ · · ·· · · ·		
			LL .10		

BOS

Building: Cherv	erus Schoo	<u>!</u>		Room :	Classroom
Exterior Noise:		37	Average	Peak Leve	87
Measured Noise	Reduction	(LAX, DEN,	BOS, only)	18.4, 18	.0
		Analysis of	Existing Nois	e Insulatio	n
Component		D	escription		<u>% Total Transmission</u>
Windows	Single glo	ızed, 130 ft ²			62%
Door	Solid core	wood, no sec	al		38%
Walls	18" brick	with concrete	columns		nil
Roof	6" concre	te on 18" x 12	?" joists	<u></u>	
Interior Absorption	n:	500	Sabins.		
		Predicted No	ise Attenuati	on = 20	
Stage I Rehabilit	ation		•	<u> </u>	
Action: Replace needed. Weather	windows w strip exteri	ith sealed dou or door.	ble glazing.	Provide me	echanical ventilation as
					NR = <u>31</u>
Stage II Rehabilit	ation				
Action: Eliminate vestibule. Install joists.	windows a gypsumboa	ind fill space rd or plaster a	with bricks. eiling on top	Replace do floor, putt	or with acoustic door or ing insulation between
•					NR = <u>45</u>
Stage III Rehabilit				······················	·
Action:					
					NR=
Comments:					
	<u></u>	; <del>_</del>			<u> </u>

BOS

4

Building: <u>Chapman School</u> Room: <u>C</u>	Classrooms
Exterior Noise: NEF 38 Average Peak Level	
Measured Noise Reduction (LAX, DEN, BOS, only)9.0, 13,	4
Analysis of Existing Noise Insulation	·
Component Description	% Total Transmission
Windows Single glazed, 240 ft ²	100%
Walls 16" brick & 3/4" plaster	nil
Roof Wood roof, plaster ceiling, vented attic	See Comment
Interior Absorption; 350 Sabins.	
Predicted Noise Attenuation = 18	
Stage I Rehabilitation	
Action: Replace windows with sealed double glazing. Provide mecha needed. Install acoustic bafiles on attic vents and insulate attic.	nical ventilation as
	NR =
Stage 11 Rehabilitation	}
Action: Eliminate windows and fill space with bricks. Attic modifica	tion as in Stage 1.
	NR = <u>41</u>
Stage III Rehabilitation	
Action:	
	NR =
Comments: NR = 14 in top floor due to roof. Becomes same as low	ver floors if attic is
baffled and insulated. Measurements in top floor classrooms	

BOS

BOS

Building: Willi	ams School	!	<u></u>	Room :	Top Floor
Exterior Noise:		37	Average	Peak Level	90
Measured Noise	Reduction	(LAX, DE	N, BOS, only)	18.5, 1	9.0
		Analysis	of Existing Noi:	e Insulation	<u></u>
Component			Description		% Total Transmission
Windows	Single g	lazed, 140 i	ft ²		95%
Roof	Builtup	roofing, pla	ster ceiling		5%
Walls	16" bric	<		<u> </u>	nil
<u></u>	<u> </u>				
Interior Absorpti	on:	500	Sabins.		,
		Predicted	Noise Attenuati	on = 21	]
Stage I Rehabil	itation				<u> </u>
Action: Replace needed.	windows v	with sealed	double glazing.	Provide med	hanical ventilation as
					NR = <u>31</u>
Stage II Rehabil	itation				<u></u>
Action: Elimina	te windows	and fill spa	ace with bricks.		
					NR = <u>34</u>
Stage III Rehabil	itation		······································	•	
Action: Stage II	, plus cem	ent ½" fiber	board followed b s stud framing an	by 5/8" gypsu	mboard to ceiling on top then avasumboard
nounted resilient	ly.				NR = 41
Comments: For	first and se	cond floors,	existing NR is I	he same, Sta	ge I NR = 34, Stage II

Building: <u>Ch</u> e	Isea Memorial Hospital Room: Pati	ent Rooms 201 & 210
Exterior Noise:	NEF Average Peak Level	
Measured Noise	Reduction (LAX, DEN, BOS, only)24.1, 25.0	
	Analysis of Existing Noise Insulation	
Component	Description	% Total Transmission
Windows	Single glazed, 18 ft ²	100.0/
Walls	8" brick & 4" concrete block	nil
Roof	6" concrete, acoustic tile ceiling	nil
Interior Absorptio	on: Sabins.	
	Predicted Noise Attenuation = 27	
Stage I Rehabil	itation	
Action: Replace needed.	windows with sealed double glazing. Provide mechan	nical ventilation as
	······································	NR =
Stage II Rehabil	itation	
Action: Elimina	te windows and fill space with brick and block.	
		NR = _41
Stage III Rehabili	itation	
Action:		
}		
		NR =
Comments:		
		·

BOS

H-53

í.

Buildin'g: Edwards School	Room:	Classroom
Exterior Noise: NEF Average (	Peak Level	= = iq
Measured Noise Reduction (LAX, DEN, BOS, only)		
Analysis of Existing Noise	Insulation	
Component Description		% Total Transmission
Windows Single glazed, 160 ft ²		99%
Walls 12" brick		
Roof Built up roofing, plaster ceiling		<u>1%(top floor only)</u>
Interior Absorption: 370 Sabins.		
Predicted Noise Attenuation	n = 20	
Stage 1 Rehabilitation	······	
Action: Replace windows with sealed double glazing. F needed. Install insulation between ceiling and roof.	Provide mecl	hanical ventilation as
		NR = _32
Stage II Rehabilitation	•	
Action: Eliminate windows and fill space with bricks. in	nsulate roof	as in Stage 1.
		NR = <u>40</u>
Stage III Rehabilitation		
Action:		
		NR =
Comments:		
		*

BÓS

BOS

Building: Barn	es Elementary Sc	hool	Room :	Third Floor Classroom
Exterior Noise:	NEF37	Average (	Peak Level	86
Measured Noise	Reduction (LAX	, DEN, BOS, only)	<del></del>	
	And	alysis of Existing Noise	Insulation	1
Component		Description		% Total Transmission
Windows	Single glazed,	70 ft ²		31%
Skylights	Cupola shape,	single glazed, about 8	0 ft ²	36%
Walls	18" brick	++ <u></u>		nil
Roof	Builtup roofing	, plaster ceiling		33%
Interior Absorptic	on : 630 Predi	Sabins.	n = 20.8	
Stage I Rehabili Action: Replace used to replace sl ventilation as new	tation windows and sky cylights, or elimi ided.	lights with sealed doub nate and fill with roof	le glazing constructi	n. 4" glass blocks may be on. Provide mechanical NR = _25
Stage 11 Rehabili	tation			
Action: Stage I floor. Alternate mounted resilient	olus cement ½" fi colling modificat ly -	berboard followed by 5 tion is stud framing and	/8" gypsu insulatior	mboard to ceiling on third a, then gypsumboard
				INK = <u>33</u>
Stage III Rehabili	tation			
Action: Eliminat vith roof construc	e windows and fi tion. Stage II c	ll space with bricks. E eiling modification on	liminate s third floor	kylights and fill space
				NR = 40
Comments: For	first and second f	loors, existing $NR = 2d$	5, Stage I	& Stage II NR = 38, and
Stage III NR = 45	•			

Building: Lawre	nce Memorial Hospital Room	: Patient Rooms
Exterior Noise: N	IEF Average Peak Lev	vel
Measured Noise R	eduction (LAX, DEN, BOS, only)	*** #* #* 
<u> </u>	Analysis of Existing Noise Insulat	ion
Component	Description	% Total Transmission
Windows	Single glazed, 48 ft ²	100%
Walls	9" brick	nil
Roof	6" concrete, plaster ceiling	
Interior Absorption	; 160 Sabins.	
	Predicted Noise Attenuation = 2	
Stage 1 Rehabilita Action: Replace w needed.	Predicted Noise Attenuation = 2 ation rindows with sealed double glazing. Provide r	nechanical ventilation as
Stage I Rehabilita Action: Replace w needed.	Predicted Noise Attenuation = 2	1 mechanical ventilation as NR = _33
Stage I Rehabilite Action: Replace w needed. Stage II Rehabilite Action: Eliminate	Predicted Noise Attenuation = 2 ation vindows with sealed double glazing. Provide a tion windows and fill space with bricks.	1mechanical ventilation as NR =
Stage I Rehabilita Action: Replace w needed. Stage II Rehabilita Action: Eliminate	Predicted Noise Attenuation = 2 ation rindows with sealed double glazing. Provide r rindows and fill space with bricks.	1 mechanical ventilation as NR = NR =43
Stage I Rehabilita Action: Replace w needed. Stage II Rehabilita Action: Eliminate Stage III Rehabilita	Predicted Noise Attenuation = 2 ation rindows with sealed double glazing. Provide r ntion windows and fill space with bricks.	1
Stage I Rehabilita Action: Replace w needed. Stage II Rehabilita Action: Eliminate Stage III Rehabilita	Predicted Noise Attenuation = 2 ation rindows with sealed double glazing. Provide r ntion windows and fill space with bricks.	1
Stage I Rehabilita Action: Replace w needed. Stage II Rehabilita Action: Eliminate Stage III Rehabilita Action:	Predicted Noise Attenuation = 2 ation rindows with sealed double glazing. Provide a nition windows and fill space with bricks.	1

BOS

DEN

## NOISE INSULATION ANALYSIS

Building:	Clyde Mille	r School	<u> </u>	Room :	Classrooms
Exterior Noise:		29	Average	Peak Level	77
Measured Noise	Reduction	(LAX, DEN,	BOS, only)	16,9	······
<u> </u>		Analysis of	Existing Nois	e Insulation	
Component		D	escription		% Total Transmission
Windows	Single gla	zed, 200 ft ²			79%
Walls	8" concre	te block			1%
Roof	1" Sheath	Ing, plaster c	eiling		19%
Interior Absorptio	on;	400	Sabins.		
		Predicted No	oise Attenuatio	on = 18	
Stage I Rehabil	itation				
Action: Replace needed.	windows w	rith sealed dou	ble glazing.	Provide mec	hanical ventilation as
		·····	······································		NR = _24
Stage II Rehabili	tation		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Action: Stage I,	plus add c	lay or concret	e tiles to roof	•	
ļi 				••••	NR =
Stage III Rehabili	tation				
Action: Eliminat	e windows o	and fill with 8	" concrete bl	ock. Add til	es to roof as in Stage II.
			••	•	NR = <u>32</u>
Comments: <u>Stag</u> NR = 39.	e III plus a	idding 2 x 4 fr	aming and pla	<u>ister to walls</u>	and ceiling would give

Building: <u>Park Lane School</u>	Room:20, 6
Exterior Noise: NEF	Average Peak Level 92
Measured Noise Reduction (LAX, DEN, BOS	, only)24.3, 24.8

Component       Description       % Total Transmission         Windows       Single glazed, 160 ft ² 92%         Walls       8" block & 4" brick       1.5%         Roof       Metal deck, brick exterior, plaster ceiling       3%         Unit Vents       3 ft ² opening       3.5%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       23         Stage I Rehabilitation       Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =		Analysis of Existing Noise Insulation	
Windows       Single glazed, 160 ft ² 92%         Walls       8" block & 4" brick       1.5%         Roof       Metal deck, brick exterior, plaster ceiling       3%         Unit Vents       3 ft ² opening       3.5%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       23         Stage I Rehabilitation       Action: Replace windows with scaled double glazing. Provide mechanical ventilation as needed.         NR =	Component	Description	% Total Transmission
Walls       8" block & 4" brick       1.5%         Roof       Metal deck, brick exterior, plaster ceiling       3%         Unit Vents       3 ft ² opening       3.5%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       23         Stage 1       Rehabilitation         Action:       Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =	Windows	Single glazed, 160 ft ²	<u>92%</u>
Roof       Metal deck, brick exterior, plaster ceiling       3%         Unit Vents       3 ft ² opening       3.5%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       23         Stage I Rehabilitation       Action:       Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =	Walls	8" block & 4" brick	1.5%
Unit Vents       3 ft ² opening       3.5%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       23         Stage I Rehabilitation       Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =	Roof	Metal deck, brick exterior, plaster ceiling	3%
Interior Absorption:	Unit Vents	3 ft ² opening	3.5%
Predicted Naise Attenuation =       23         Stage 1 Rehabilitation       Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =       32         Stage 11 Rehabilitation       NR =         Action: Eliminate windows and fill space with brick/block. Eliminate or acoustically baffle unit vent openings.       NR =         Stage 111 Rehabilitation       NR =         Stage 111 Rehabilitation       NR =         Comments: Measured NR dB higher than shown here because windows faced away from aircraft.       NR =	Interior Absorption	1: 800 Sabins.	
Stage 1       Rehabilitation         Action:       Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =		Predicted Noise Attenuation = 23	
Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.       NR =	Stage I Rehabilit	ation	
NR =	Action: Replace v	vindows with sealed double glazing. Provide mecha	nical ventilation as
Stage 11 Rehabilitation         Action: Eliminate windows and fill space with brick/block. Eliminate or acoustically baffle unit vent openings.         NR =			NR = <u>32</u>
Action: Eliminate windows and fill space with brick/block. Eliminate or acoustically baffle unit vent openings. NR =	Stage 11 Rehabilit	ation	
NR = <u>36</u> Stage III Rehabilitation Action: NR = Comments: Measured NR dB higher than shown here because windows faced away from air- craft. Values shown here are for equivalent rooms facing aircraft.	Action: Eliminate baffle unit vent op	windows and fill space with brick/block. Eliminate enings.	e or acoustically
Stage III Rehabilitation Action: NR = Comments: Measured NR dB higher than shown here because windows faced away from air- craft. Values shown here are for equivalent rooms facing aircraft.			NR =
Action: NR = Comments: Measured NR dB higher than shown here because windows faced away from air- craft. Values shown here are for equivalent rooms facing aircraft.	Stage III Rehabilita	ation	
NR =	Action:		
Comments: Measured NR dB higher than shown here because windows faced away from air- craft. Values shown here are for equivalent rooms facing aircraft.			NR =
craft. Values shown here are for equivalent rooms facing aircraft.	Comments; Measu	red NR dB higher than shown here because windows	faced away from air-
	craft. Values show	n here are for equivalent rooms facing aircraft.	

Building: Sable School	Room :	Faculty Dining Room
Exterior Noise: NEF 40	Average Peak Lev	el92
Measured Noise Reduction (LAX, DEN, BO	S, only) <u>15</u> .	5
Analysis of Exi	sting Noise Insulati	рл
Component Desci	iption	% Total Transmission
Windows Single glazed, 216 ft ²		92%
Door Solid wood, weatherstrippe	d	
Roof 6" concrete, insulated		nil
Walls 4" brick & 8" block		
<u></u>		
Interior Absorption: 250	Sabins.	
Predicted Noise	Attenuation = 16	.5
Stage 1 Rehabilitation		
Action: Replace windows with sealed double needed.	glazing. Provide m	echanical ventilation as
		NR = <u>25</u>
Stage II Rehabilitation		
Action: Stage I, plus install acoustic seals or	door.	
·		NR = <u>28</u>
Stage III Rehabilitation		
- Action: Eliminate windows and fill space with double door or entrance vestibule.	bricks and block .	Replace door with acoustic
		NR = <u>36</u>
Comments: <u>Room has very little absorption –</u> attenuation by up to 5 dB by installing carpets	could improve exist , acoustic tile, and	ing and rehabilitate hanging heavy drapes
over glass interior walls.	<u></u>	·····

Building: S	able School		Room :	4
Exterior Noise:	NEF40	Average	Peak Level _	. 92
Measured Noise	Reduction (LAX, DEN, B	OS, only)	28.7	<u> </u>
	Analysis of Ex	cisting Noise	Insulation	<u> </u>
Component	Des	cription		% Total Transmission
Windows	Single glazed, 190 ft ²			<b>89</b> %
Door	Solid wood, weatherstripp	ed		11%
Walls	8" block & 4" brick			nil
Roof	6" concrete, insulated			nil
Interior Absorpt	on:1,000	Sabins .		
	Predicted Noise	• Attenuation	n = 22.9	
Stage I Rehabi	Predicted Noise	e Attenuation	n = 22.9	
Stage I Rehabi Action: Replac needed.	Predicted Noise	e glazing. 1	n = 22.9 Provide mecha	nical ventilation as
Stage I Rehabi Action: Replac needed.	Predicted Noise litation e windows with sealed double	e glazing. 1	n = 22.9 Provide mecha	nical ventilation as NR = <u>30</u>
Stage I Rehabi Action: Replac needed. Stage II Rehabi	Predicted Noise litation e windows with sealed double itation	e glazing. 1	n = 22.9 Provide mecha	nical ventilation as NR = <u>30</u>
Stage I Rehabi Action: Replac needed. Stage II Rehabi Action: Stage I	Predicted Noise litation e windows with sealed double itation , plus install acoustic seals o	e glazing. (	n = 22.9 Provide mecha	nical ventilation as NR = <u>30</u>
Stage I Rehabi Action: Replac needed. Stage II Rehabi Action: Stage I	Predicted Noise litation e windows with sealed double itation , plus install acoustic seals o	e glazing. 1 on door.	n = 22.9 Provide mecha	nical ventilation as NR = <u>30</u> NR = <u>35</u>
Stage I Rehabi Action: Replac needed. Stage II Rehabi Action: Stage I Stage III Rehabi	Predicted Noise litation e windows with sealed double itation , plus install acoustic seals o itation	e glazing. 1	n = 22.9 Provide mecha	nical ventilation as NR = <u>30</u> NR = <u>35</u>
Stage I Rehabi Action: Replac needed. Stage II Rehabi Action: Stage I Stage III Rehabi Action: Elimina	Predicted Noise litation e windows with sealed double itation , plus install acoustic seals o itation te windows and fill space wi itance vestibule.	e glazing. I on door.	n = 22.9 Provide mecha	nical ventilation as NR = <u>30</u> NR = <u>35</u> ace door with acoustic
Stage I Rehabi Action: Replac needed. Stage II Rehabi Action: Stage I Stage III Rehabi Action: Elimina louble door or en	Predicted Noise litation e windows with sealed double itation , plus install acoustic seals o itation te windows and fill space wi attance vestibule.	e glazing. A	n = 22.9 Provide mecha	nical ventilation as NR = <u>30</u> NR = <u>35</u> ace door with acoustic NR = <u>42</u>

Building: <u>Ma</u>	ontview Scl	100l	Room :	Classroom	
Exterior Noise:	NEF	37	Average Peak Level		
Measured Noise	Reduction	(LAX, DEN	N, BOS, only)	<b> </b>	
·	····	Analysis	of Existing Noise Insulation		
Component			Description	% Total Transmission	
Windows	Single gla	zed, 75 ft 2		32%	
Walls	40% block	& Brick, 60	0% stucco/plaster	10%	
Door	Hollow co	re wood, rul	ber seals	44%	
Roof	Builtup ro	ofing, plaste	er ceiling, insulated	9%	
Unit Vents	2 per room	, 6 ft ² tota	lopening	5%	
Interior Absorptio	on:	630 Predicted	Sabins. Noise Attenuation = 20.6		
Stage I Rehabil Action: Replace needed. Replace	itation windows w door with	ith sealed d 1 3/4" solid	louble glazing. Provide mech d core door, weatherstripped.	nanical ventilation as $NR = 26$	
			·····	<u> </u>	
Stage II Rehabilitation Action: Stage I, plus add clay or concrete tiles to roof, eliminate or acoustically baffle unit vents, install œoustic seals on door, insulate stucco/plaster portion of walls and add second layer of lathing and plaster NR = <u>33</u>					
Stage III Rehabili	itation				
Action: Eliminat and 5/8" gypsuml wood door with a	te windows board to ini coustic sea	and fill to n terior of plas ls, Modify	natch wall. Insulate wall. C ster portion of wall. Replace roof and attic vents as in Stag	Cement ½" fiberboard door with solid core ge 11. NR =39	
Comments:				· · · · · · · · · · · · · · · · · · ·	

Building: Nor	th Junior High School	Room :	12
Exterior Noise:	NEF 36	Average Peak Level	78
Measured Noise	Reduction (LAX, DEN;	BOS, only)24.	1
	Analysis of	Existing Noise Insulation	
Component	De	escription	% Total Transmission
Windows	Single glazed, 70 ft ²		53%
Glass Blocks	160 ft ² , in place of win	dow	7%
Walls	12" brick, tile interior	·	nil
Unit Vents	Opening 4 ft ²		6%
Roof	Steel joists, gypsum dec	k, plaster ceiling	33%
Interior Absorptic	on; <u>630</u> Predicted No	Sabins.	
Stage I Rehabili Action: Replace needed.	itation windows with sealed dou	ble glazing, Provide mech	nanical ventilation as NR = 27
Circo II Robebili		······································	
Action: Stage I,	plus add clay or concrete	e tiles to roof.	
			NR = _31
Stage III Rehabili	tation		
Action: Eliminat baffle unit vent o	te glass blocks and window penings. Add clay or cor	ws, fill space with bricks. acrete tiles to roof.	Eliminate or acoustically
			NR = <u>40</u>
Comments:			

DEN

Building: <u>North</u>	<u>n Junior High Schoo</u>	Room:	
Exterior Noise:	NEF36	Average Peak Level	78
Measured Noise	Reduction (LAX, D	DEN, BOS, only)	25
	Analy	sis of Existing Noise Insulation	
Component		Description	% Total Transmission
Windows	Single glazed, 210	0 ft ²	80%
Walls	12" brick, tile inte	orior	nil
Unit Vents	4 ft ² opening		
Roof	Steel joists, gypsur	m dock, plaster ceiling	17%
	. <u></u>		
Interior Absorptio		Sabins.	
	Predicto	ad Noise Attenuation = 21	]
Stage 1 Rehabili Action: Replace needed.	tation windows with soale	d double glazing. Provide me	chanical ventilation as
			NR = <u>27</u>
Stage II Rehabili	tation		
Action: Stage I,	plus add clay or co	oncrete tiles to roof.	
			NR = _31
Stage III Rehabili	tation		
Action: Eliminate vent openings. A	e windows and fill s dd clay or concrete	pace with bricks. Eliminate o tiles to roof.	r acoustically baffle unit
			NR = _40
Comments:			·····
<u>.</u>			

DEN

ij

Building:Fitzsim	ons Hospital	Room;	4133, 4062
Exterior Noise: NEF	35	Average Peak Level	80
Measured Noise Redu	tion (LAX, DEN, BC	)S, only) <u>25,5, 2</u> ;	5.3
<u>`````````````````````````````````````</u>	Analysis of Ex	isting Noise Insulation	1
Component	Desc	ription	% Total Transmission
Windows Sing	le glazed, 15 ft ²		100%
Walls 12"	masonry		nil
Roof Con	crete slab		nil
Interior Absorption:	160	Sabins.	
	Predicted Noise	Attenuation = 26.5	
Stage 1 Rehabilitatio Action: Replace wind needed.	n ow with sealed double	glazing. Provide med	chanical ventilation as
			NR = <u>38</u>
Stage II Rehabilitation Action: Eliminate win	n ndow and fill space wit	h masonry to match we	all.
			NR = <u>42</u>
Stage III Rehabilitation	)		
Action:			
			NR =
Comments:			
		<u> </u>	
·····			

NOISE	INSULATION	ANALYSIS	

Building:       Boston Elementary School       Room:       1         Exterior Noise:       NEF		NOISE INS	ULATION ANALYSIS	
Exterior Noise: NEF Average Peak Level	Building: Bos	ton Elementary School	Room :	1
Measured Noise Reduction (LAX, DEN, BOS, only)       25.8         Analysis of Existing Noise Insulation         Component       Description         Windows       Single glazed, 200 ft ² Walls       12" brick & ½" plaster         Roof       Brick exterior, plaster ceiling         Skylights       4' x 4' glass block, 4 in each room         Unit Vents       4.5 ft ² opening         Hereirer Absorption:       800         Stage 1       Rehabilitation         Action:       Replace windows with scaled double glazing. Provide mechanical ventilation as needed.         NR = _30	Exterior Noise:	NEF	Average Peak Level	85
Analysis of Existing Noise Insulation         Component       Description       % Total Transmission         Windows       Single glazed, 200 ft ² 92%         Walls       12" brick & ½" plaster       nil         Roof       Brick exterior, plaster ceiling       3%         Skylights       4" x 4" glass block, 4 in each room       2%         Unit Vents       4.5 ft ² opening       4%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       21.5         Stage 1       Rehabilitation         Action:       Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR = _30	Measured Noise	Reduction (LAX, DEN, BC	S, only)	
Camponent         Description         % Total Transmission           Windows         Single glazed, 200 ft ² 92%           Walls         12" brick & ½" plaster         nil           Roof         Brick exterior, plaster ceiling         3%           Skylights         4' x 4' glass block, 4 in each room         2%           Unit Vents         4.5 ft ² opening         4%           Unit Vents         4.5 ft ² opening         4%           Interior Absorption:         800         Sabins.           Predicted Noise Attenuation         21.5           Stage 1 Rehabilitation         NR =		Analysis of Exi	sting Noise Insulation	
Windows       Single glazed, 200 ft ² 92%         Walls       12" brick & ½" plaster       nil         Roof       Brick exterior, plaster ceiling       3%         Skylights       4' x 4' glass block, 4 in each room       2%         Unit Vents       4.5 ft ² opening       4%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       21.5         Stage 1       Rehabilitation         Action:       Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR = _30	Component	Desc	ription	% Total Transmission
Walls       12" brick & ½" plaster       nil         Roof       Brick exterior, plaster ceiling       3%         Skylights       4' x 4' glass block, 4 in each room       2%         Unit Vents       4.5 ft ² opening       4%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       21.5         Stage 1       Rehabilitation         Action:       Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =	Windows	Single glazed, 200 ft ²		92%
Roof       Brick exterior, plaster ceiling       3%         Skylights       4' × 4' glass block, 4 in each room       2%         Unit Vents       4.5 ft ² opening       4%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       21.5         Stage 1       Rehabilitation         Action:       Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR = _30	Walls	12" brick & ½" plaster		nil
Skylights       4' x 4' glass block, 4 in each room       2%         Unit Vents       4.5 ft ² opening       4%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       21.5         Stage 1 Rehabilitation       Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR = _30	Roof	Brick exterior, plaster ceil	ing	3%
Unit Vents       4.5 ft ² opening       4%         Interior Absorption:       800       Sabins.         Predicted Noise Attenuation =       21.5         Stage 1 Rehabilitation       Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =	Skylights	4' x 4' glass block, 4 in ea	ch room	2%
Interior Absorption:800Sabins. Predicted Noise Attenuation = 21.5 Stage 1 Rehabilitation Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed. NR = Stage II Rehabilitation Action: Eliminate windows and fill space with brick. Eliminate skylights. Eliminate unit vents or acoustically baffle openings. NR = Stage III Rehabilitation Action: NR = Comments:	Unit Vents	4.5 ft ² opening		4%
Predicted Noise Attenuation =       21.5         Stage I Rehabilitation       Action: Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =	Interior Absorptic	on:800	Sabins.	
Stage 1       Rehabilitation         Action:       Replace windows with sealed double glazing. Provide mechanical ventilation as needed.         NR =		Predicted Noise	Attenuation = 21.5	
NR =         Stage II Rehabilitation         Action:       Eliminate windows and fill space with brick. Eliminate skylights. Eliminate unit vents or acoustically baffle openings.         NR =       NR =         Stage III Rehabilitation       NR =         Action:       NR =         Comments:       Identical to Paris School.	Stage I Rehabili Action: Replace needed.	tation windows with sealed double	glazing. Provide mecha	nical ventilation as
Stage II Rehabilitation Action: Eliminate windows and fill space with brick. Eliminate skylights. Eliminate unit vents or acoustically baffle openings. NR = Stage III Rehabilitation Action: NR = Comments:Identical to Paris School.				NR = <u>30</u>
NR = Stage III Rehabilitation Action: NR = Comments:Identical to Paris School.	Stage II Rehabili Action: Eliminat vents or acoustica	tation e windows and fill space wit ally baffle openings.	h brick. Eliminate skylig	hts. Eliminate unit
Stage III Rehabilitation Action: NR = Comments:Identical to Paris School.				NR = <u>37</u>
Action: NR = Comments:Identical to Paris School.	Stage III Rehabili	tation		
Comments:Identical to Paris School.	Action:			
Comments: Identical to Paris School.				NR =
	Comments: Id	entical to Paris School.		······································
	·····			

DEN

Building: Pari	s Elementary School	Room :	]
Exterior Noise:	NEF	Average Peak Level	65
Measured Noise	Reduction (LAX, DEN, BC	95, only) 19.9	
	Analysis of Exi	sting Noise Insulation	
Component	Desc	ription	% Total Transmission
Windows	Single glazed, 200 ft ²		92%
Walls	12" brick & ½" plaster		nil
Roof	Brick exterior, plaster cell	ing	3%
Skylights	4' x 4' glass block, 4 in ea	ch room	2%
Unit Vents	4.5 ft ² opening		4%
Interior Absorpti	on: 800 Predicted Naise	Sabins. Attenuation = 21.5	
Stage I Rehabil Action: Replace needed.	itation windows with sealed double	glazing, Provide mecha	nical ventilation as
			NR = <u>30</u>
Stage II Rehabil	itation	·····	
Action: Elimina vents or acoustic	te windows and fill space wit ally baffle openings.	h brick , Eliminate skylig	hts. Eliminate unit
			NR = <u>37</u>
Stage III Rehabili Action:	tation		
			NR =
Comments: Ider	itical to Boston School.		
			<u> </u>

Building: <u>De</u>	nver General Hospital	Room:	13' x 15' Patient Room
Exterior Noise:	NEF	Average Peak Leve	<u></u>
Measured Noise	Reduction (LAX, DEN, BO	S, only)	
	Analysis of Exi	sting Noise Insulation	]
Component	Descr	iption	% Total Transmission
Windows	Single glazed, 65 ft ²		100%
Walls	5" concrete, 2" foom insula	ition, ¹ " gypsumboar	dnil
Roof	3" concrete slab plus insula	tion	nil
Interior Absorptio		Sabins.	
	·····		
	Predicted Noise	Attenuation = 20	
Stage I Rehabil	itation		
Action: Replace needed.	windows with sealed double	glazing, Provide me	chanical ventilation as
			NR = <u>32</u>
Stage II Rehabili	itation	<u> </u>	
Action: Eliminat	e windows and fill with wall	construction.	
			NR =
Stage III Rehabili	tation		
Action:			
			NR =
Comments: Atter	nuation and rehabilitation vir	tually the same for 2	6' x 21' patient rooms.
·			

DEN

Building:	Elyria		Room;	Classroom
Exterior No	oise: NEF		Average Peak Level	•••
Measured N	Noise Reductio	n (LAX, DEN,	BOS, only)	
		Analysis of	Existing Noise Insulation	
Component		D	Description	% Total Transmission
Windows	Single	glazed, 130 ft ²		42%
Walls	13" ma	sonry and brick		1%
Roof	<u>&amp; book</u> attic	<u>composition sh</u>	ingles, uninsulated vented	54%
Unit Vent	3 ft ² op	pening		2%
Interior Abs	sorption:	500	Sabins.	
		Predicted No	olse Attenuation = 18	
Stage I Re Action: Re needed. In	habilitation place windows sstall acoustic	Predicted No with sealed dou baffles in attice	olse Attenuation = 18 uble glazing. Provide mech vents.	anical ventilation as
Stage I Re Action: Re needed. In	habilitation place windows sstall acoustic	Predicted No with sealed dou baffles in atticy	olse Attenuation = 18 uble glazing. Provide mech vents.	anical ventilation as NR = <u>30</u>
Stage I Re Action: Re needed. In Stage II Re	habilitation place windows stall acoustic habilitation	Predicted No with sealed dou baffles in attic	oise Attenuation = 18 uble glazing. Provide mech vents.	anical ventilation as NR = <u>30</u>
Stage I Re Action: Ro noeded. In Stage II Re Action: Ell acoustic bal	habilitation place windows stall acoustic habilitation minate window ffles in attic vi	Predicted No with sealed dou baffles in attice vs and fill space ents. Eliminate	olse Attenuation = <u>18</u> uble glazing. Provide mech vents. with masonry and brick to m or acoustically baffle unit	anical ventilation as NR = <u>_30</u> natch wall. Install vents.
Stage I Re Action: Re needed. In Stage II Re Action: Eli acoustic bat	habilitation place windows istall acoustic habilitation minate window ffles in attic vi	Predicted No with sealed dou baffles in attice vs and fill space ents. Eliminate	olse Attenuation = 18 uble glazing. Provide mech- vents.	nical ventilation as NR = <u>_30</u> natch walf. Install vents. NR = <u>36</u>
Stage I Re Action: Re needed. In Stage II Re Action: Eli acoustic bat	habilitation place windows istall acoustic habilitation files in attic ve habilitation	Predicted No with sealed dou baffles in attice vs and fill space ents. Eliminate	oise Attenuation = 18 uble glazing. Provide mech vents.	anical ventilation as NR =30 match wall. Install vents. NR =36
Stage I Re Action: Re needed. In Stage II Re Action: Eli acoustic bat Stage III Re Action:	habilitation place windows istall acoustic habilitation files in attic ve habilitation	Predicted No with sealed dou baffles in attice vs and fill space ents. Eliminate	oise Attenuation = 18 uble glazing. Provide mech vents.	anical ventilation as NR = <u>_30</u> match wall. Install vents. NR = <u>36</u>
Stage I Re Action: Re needed. In Stage II Re Action: Eli acoustic bat Stage III Re Action:	habilitation place windows istall acoustic habilitation iminate window ffles in attic vi habilitation	Predicted No with sealed dou baffles in attice and fill space ents. Eliminate	olse Attenuation = 18 uble glazing. Provide mech vents.	nical ventilation as $NR = _30 natch wall. Install vents. NR = _36 NR =36$

## APPENDIX I

## CATEGORY A & B NOISE REDUCTION IMPROVEMENTS

	Į	Category A			Category B		
Building	Existing NR	NR		Stage	NR		Stage
Schools							}
Imperial School Room 6 Room 2 & 11	32 26	37	11	Exists I	42 42	10 16	
Lennox H.S.	21	33	12	II	38	17	ш
Felton Avenue	19	30	11	11	35	16	m
Clyde Woodworth	18	27	9	I	37	19	n
Momingside H.S. Room J2 Room V2	18 20	27 29	9 9	1 1	40 40	22 20	11 11
Westchester	19	36	17	1	4]	22	п
Figueroa St.	22	34	12	ÌI	39	20	п
Lawndale H.S.	23	34	11	I	41	22	п
Average Standard Deviation			10.6 3.1			17.8 4.0	
Hospitals		*******					
Centinella	26	37	11	1	41	15	п
Imperial	24	34	10	Ι	42	18	П
Average Standard Deviation			10.5 0.7			16.5 2.1	

## TABLE I-1. CATEGORY A & B NOISE REDUCTION IMPROVEMENTS - LAX

# TABLE I-2. CATEGORY A & B NOISE REDUCTION IMPROVEMENTS - PHX

·	Category A			Category B			
Building	Existing NR	NR_		Stage	NR	ΔNR	Stage
Schools							
Grant Elementary	22	35	13	II	42	20	Ш
Adeline Gray	22	31	9	I	41	19	п
Lincoln Elementary	20	32	12	I	39	19	n
Skiff Elementary	21	29	8	I	40	19	m
Wilson Hawkins Elementary	21	19	8	I	40	19	П
Dunbar Elementary	22	34	12	I	40	18	ц
Silvestre Herrera Elementary	19	33	14	I	40	21	ц
Ann Ott (Stevenson)	20	31	11	п	41	21	ш
Average Standard Deviation			10.9 2.3			19.5 1.1	
Hospitals							
Arizona Children's	19	31	12	I	41	22	п
Arizona State	18	28	10	п	42	24	١٧
Average Standard Deviation			11.0 1.4			23.0 1.4	

		Category A			Category B		
Building	Existing NR	NR	۵NR	Stage	NR	ANR	Stage
Schools							
Dunbar Elementary	29	-	-	Exists	40	11	I
Citrus Grove Elementary	18	2 <b>9</b>	11	I	40	22	п
Weatly Elementary	22	33	11	1	43	21	п
Booker T. Washington	21	31	10	I	44	23	ш
Aubumdale Elementary	n	30	19	П	35	24	п
Kensington Elementary	11	30	19	11	39	28	ш
Buena Vista Elementary	22	33	11	I	44	22	III III
Robert E. Lee J.H.S.	21	31	10	II	42	21	m
Average Standard Deviation			13.0 4.1			21.5 4.8	
Hospitals		<u> </u>					
Jackson Memorial	27	38	11	1	45	18	п
Pan American	22	32	10	I	39	17	ц
Average Standard Deviation			10.5 0.7			17.5 0.7	
			<del>↓</del>				

# TABLE 1-3. CATEGORY A & B NOISE REDUCTION IMPROVEMENTS - MIA

		Category A			Category B		
Building	Existing NR	NR		Stage	NR		Stage
Schools							
Winthrop J.H.S. Room 206 Room 220	28 25	36 33	8 8	I I	42 39	14 14	II II
Julia Ward Howe School 1st Floor 2nd Floor	22 18	33 33	11 15	11 11	40 38	18 20	
Garfield J. H.S.	22	34	12	I	45	23	п
Cherverus School	20	31	11	I	45	25	п
Chapman School	18	29	11	I	41	23	п
Williams School	21	31	10	1	41	20	ш
Edward School	20	32	12	1	40	20	11
Barnes Elementary School	21	33	12	II	40	19	ш
Average Standard Deviation			10.00 2.3			19.60 3.6	
<u>Hospitals</u>							
Winthrop Community Room 319 Room 271	22 28	33 37	11 9	I I	42 42	20 18	II II
Lawrence Memorial Hospital	21	33	12	I	43	22	II
Chelsea Memorial	27	37	10	I	41	14 **	п
Average Standard Deviation			10.50 1.3	•		18.5 3.4	

## TABLE I-4. CATEGORY A & B NOISE REDUCTION IMPROVEMENTS - BOS

1-4

		Category A			Category B		
Building	Existing NR	NR		Stage	NR		Stage
Schools							
Newton Estates School	21	32	11	I	37	16	п
Longino School	22	32	10	I	40	18	п
Lake Shore H.S.	22	34	12	I	41	19	n
Eastern School	21	31	10	I	41	20	n
College Park H.S.	21	33	12	I	42	21	п
Woodward Academy	29	39	10	I	43	14	l n
William Fountain	24	36	12	I	43	19	n
Crawford Long School	22	33	11	I	42	20	п
Samuel Young	21	33	12	I	42	21	u
St. John School	23	35	12	I	43	20	п
Average Standard Deviation			11.2 0.9			18.8	
NO HOSPITALS		,					

# TABLE 1-5. CATEGORY A & B NOISE REDUCTION IMPROVEMENTS - ATL

1

		Category A			Category B		
Building	Existing NR	NR	ANR	Stage	NR		Stage
Schools							
Clyde Miller	18	28	10	п	39	21	IV
Park Lane	23	32	9	1	36	13	11
Sable School (Faculty Dining Rm) Room 4	16 23	28 35	12 12	и п	36 42	20 19	
Montview School	21	33	12	п	39	18	ш
North J.H.S. Room #12 Room #13	24 21	31 31	7 10	11 11	40 40	16 19	
Boston Elementary School	21	30	9	1	37	16	п
Paris Elementary School	21	30	9	I	37	16	п
Elyria	18	30	12	1	36	18	11
Average Standard Deviation			10.20 1.8			17.6 2.4	
Hospitals		-					
Fitzsimons Hospital	26	38	12	1	42	12	п
Denver General	20	32	12	I	38	18	н
Average Standard Deviation			12 0			15.0 4.2	

# TABLE I-6. CATEGORY A & B NOISE REDUCTION IMPROVEMENTS - DEN

.

#### APPENDIX J

#### A-WEIGHTED CUMULATIVE NOISE METRICS

This study considered aircraft noise in terms of maximum A-weighted noise levels. Another approach to representing noise is in terms of A-weighted cumulative noise metrics. The two most commonly used cumulative metrics are:

$$L_{eq} = \frac{1}{T} \int_{T} 10^{L/10} dt$$
 (J-1)

where L is the instantaneous A-weighted noise level, and T is the time period of interest, and

$$L_{dn} = \frac{1}{24 \text{ hr}} \int_{0700}^{2200} 10^{L/10} \text{ dt} + \int_{2200}^{0700} 10^{(L + 10)/10} \text{ dt} \qquad (J-2)$$

where the first integral represents daytime and the second represents nighttime.

The noise reductions developed in this study apply to any A-weighted aircraft noise level, not just the maximum. (To compute  $L_{eq}$  or  $L_{dn}$ , NR would be subtracted from L in Equation (J-1) or (J-2). Because NR is constant for a given building, it may be factored out of the integrals.) NR for  $L_{eq}$  and  $L_{dn}$  is thus exactly the same as for maximum levels. The building noise reduction and unit cost data developed in this study are equally valid for application to impact expressed as  $L_{eq}$  or  $L_{dn}$ .

## APPENDIX K

1000

. . . .

a maria

58 ST 1

## STATE AND REGIONAL CONSTRUCTION COST ADJUSTMENT FACTORS

## TABLE K-I

Sec. 27

ፖ

and the second second

х.

5 - 12

#### STATE AND REGIONAL BUILDING CONSTRUCTION COST ADJUSTMENT FACTORS

FAA Region	States	General	Labor	Material
I. New England (ANE)	Maine	.87	.77	.97
	Vermont	.96	.98	.94
	New Hampshire	.91	.82	1.00
	Massachusetts	1.01	.95	1.07
	Rhode Island	1.08	.90	1.25
	Connecticut	.98	.95	1.00
	<b>Regional Factors</b>	.97	.90	1.04
2. Eastern (AEA)	New York	1.03	1.07	.99
· · ·	New Jersey	.97	.98	.96
	Pennsy Ivanta	.99	.99	.99
	Maryland	.97	.93	1.01
	Delaware	1.01	1.00	1.01
	Virginia	.87	.71	1.02
	West Virginia	1.00	.94	1.05
	<b>Regional Factors</b>	.98	.95	1.00
3. Southern (ASO)	North Carolina	.73	.48	.98
	South Carolina	.72	.51	.92
	Georgia	.84	.72	.96
	Florida	.96	.98	.93
	Alabama	.79	.63	.94
	Mississippi	.84	.71	.97
	Tennessee	.85	.77	.84
	Kentucky	.94	.86	1.01
	Regional Factors	.83	.71	.94

4. Great Lakes (AGL)       Ohio       .99       1.00         Indiana       .96       .94         Illinois       .99       .98         Michigan       1.01       1.00         Wisconsin       .97       .93         Minnesota       .99       .94         5. Southwest (ASW)       Arkansas       .83       .73         Louisiana       .84       .72         Oklahoma       .88       .82         Texas       .84       .74	.98 .97 .99 1.01 .98 1.04 .92 .96 .93
Indiana.96.94Illinois.99.98MichiganI.01I.00Wisconsin.97.93Minnesota.99.945. Southwest (ASW)Arkansas.83.73Louisiana.84.72Oklahoma.88.82Texas.84.74	.97 .99 1.01 .98 1.04 .92 .96 .93
Illinois       .99       .98         Michigan       1.01       1.00         Wisconsin       .97       .93         Minnesoto       .99       .94         5. Southwest (ASW)       Arkansas       .83       .73         Louisiana       .84       .72         Oklahoma       .88       .82         Texas       .84       .74	.99 1.01 .98 1.04 .92 .96 .93
Michigan       1.01       1.00         Wisconsin       .97       .93         Minnesota       .99       .94         5. Southwest (ASW)       Arkansas       .83       .73         Louisiana       .84       .72         Oklahoma       .88       .82         Texas       .84       .74	1.01 .98 1.04 .92 .96 .93
Wisconsin.97.93Minnesota.99.945. Southwest (ASW)Arkansas.83.73Louisiana.84.72Oklahoma.88.82Texas.84.74	.98 1.04 .92 .96 .93
Minnesota.99.945. Southwest (ASW)Arkansas.83.73Louisiana.84.72Oklahoma.88.82Texas.84.74	1.04 .92 .96 .93
5. Southwest (ASW) Arkansas .83 .73 Louisiana .84 .72 Oklahoma .88 .82 Texas .84 .74	.92 .96 .93
Louisiana .84 .72 Oklahoma .88 .82 Texas .84 .74	.96 .93
Oklahoma .88 .82 Texas .84 .74	.93
Texas .84 .74	
	.93
New Maxico .86 .81	.91
Regional Factors .85 .76	.93
6. Central (ACE) Nebraska .98 .91	1.05
Kansas .92 .86	.97
Missouri .99 .99	.98
lowa .98 .92	1.05
Regional Factors .97 .92	1.01
7. Rocky Mountain (ARM) Colorado .91 .92	.89
Utah .91 .95	.86
Wyoming .94 .89	.98
Montana .99 .88	1.10
North Dakota .92 .75	1.08
South Dakota .87 .73	10.1
Regional Factors .92 .85	.99

en Belgeneren der Bergeneren er eine er versekenden

. .

## TABLE K-I (Cont'd.)

~

K-2

# TABLE K-I (Cont'd.)

Σ

FAA Region	States	General	Labor	Material	
8. Western (AWE)	Arizona Nevada California	.98 1.08 1.10	.95  . 3  . 6	1.01 1.03 1.04	
9. Northwest (ANW)	Idaho Oregen Washington Regional Factors	.95 1.03 .99 .99	.87  .02 .98 .95	1.03 1.03 1.01 1.02	•
10. Pacific - Asia (APC)	Howali	1.11	.85	1.36	يھين. -
II. Alaska (AAL)	Alaska	1.27	1.19	1.35	· · · · · · · · · · · · · · · · · · ·
C	OST ADJUSTMENT FACTO	DRS			
----------	----------------------	-------------------	----------		
	•	Correction Factor	3		
	General	Labor	Material		
Region A	1.10	1.17	1.03		
Region B	1.00	.92	1.07		
Region C	.84	.74	.94		

.97

.85

.94

1.27

1.11

.87

Region D

Region E

Region F

Alaska

Hawait

Puerto Rico

SIX	REGIONAL BUILDING CONSTRUCTION	1,2
	COST ADJUSTMENT FACTORS	• •

TABLE K-2

1 1977 Dodge Manual for Building Construction Pricing and Scheduling, McGraw-Hill Information Systems Company, New York, 1976. 2 1977 Dodge Construction Systems Costs, McGraw-Hill Information Systems Company, New York, 1976.

K-4

.94

.75

.88

1.19

.85

.37

1.00

.95

.99

1.35

1.36

1.36

		$\{\mathbf{r}_{i}, \dots, \mathbf{r}_{i}\}_{i=1}^{n}$	
		n an an an Arran an Arran an Arran an Arran an Arran an Arran a	200 M
the first of the second s	No Contraction Anna Contraction Anna Contraction		
	- 1		·.
1 	5 . A	· ". i	
đ.		• • • •	
1	2	• •	··· ·
•	· •	i.e.	· • • • • •
8 e.		APPENDIX L	
	1997 - E		6 - X
1,20 (k	REGIONA	L DELTA NOISE REDUCTION	) 1. av.a
24.		·	Sec. Sec.

- Marian Marina Mariana Marina Marina Marina Marina

्रोती के स्वाधिक के साथ के साथ के स्विधिक कर के साथ के स्वाध के स्वाध के से स्वाध के से सिंहर के से सिंहर के लि साथ के साथ कि साथ कि साथ के सिर्फ के साथ के साथ के साथ के साथ क साथ के साथ कि साथ के सिर्फ के साथ के साथ के साथ के साथ क साथ के 
TABLE L-1

## REGIONAL ANR BY CATEGORY

Construction	Cate	gory A	Сатедолу	в
	School	Hospital	School	Hospital
A	11	11	18	17
В	11	11	20	23
c	13	11	22	18
D	01	11	20	10
E	11 -		19	
<b>٦</b>	10	12	18	15
National Average	11	11	20	18

## APPENDIX M

# COSTINGS OF SAMPLE BUILDINGS (1977 PRICE)

# COSTINGS OF SAMPLE BUILDINGS (1977 PRICE)

M

# CONSTRUCTION REGION A

S	chools				<del>ا</del>	ospitals			0
	Room	Costs		Room	L	Room	Costs	C.A. 9	rcoom c c
Name	No.	Cat. A	<u>Cat. B</u>	2.5	• Name	100.	<u>Cat. A</u>	<u>_Cot. B.</u>	<u> </u>
Imperial School	14	\$ 4,720	\$ 4,924(2) 43,920(3)	12600	Centinela Hospital	260	\$ 847,382	\$ 840,768	58500
• <u>1</u>					Imperial Hospital	92	305,367	348,937	17664
Lennox High School	36	164,285	206,235	31248	Sample Housitals	352	\$1, 152,749	\$1, 189,705	76164
Folton Avenue Schoo	ol 20	108,836	109,83 i	18000	Sompte Hospitats	001	<i><i>q</i> ,<i>,</i> .<i>–,</i>,</i>	<i>••••••••••••</i>	
Clyde Woodworth Sc	h 32	182,080	170,350	30464					
Morningside School	72	346,075	393,736	68544	Ļ				
Westchester High Sch	h. <u>58</u>	239,027	277,280	43500	-				
Sample School Bldgs	. 232	\$1,045,023\$	51, 206, 276	204356	à				
Cost Per Sq. Ft.		<u>\$ 5.11</u>	5,90		Cost Per Sq. Ft.		\$ 15,14	\$ 15.62	
Cost PerSchool Room for Region A	ı	<u>\$ 4,504</u>	\$ 5,199	C	Cost Per Hospital Ro for Region A	om	\$ 3,275	\$ 3,380	
Outside NEF 30								-	
Figueroa Street Sch Lawndale High Sch	1001 001	\$ 115,815 \$ 352,329							

# COSTINGS OF SAMPLE BUILDINGS (1977 PRICE)

# CONSTRUCTION REGION B

e 1911 - 10

M-2

•	Scho	ols				Hosp	<u>itals</u>			
	Nome	Room No.	Cost. A.	Cat. B.	Room S.F.	Name	Room No.	Cat. A.	Cat. B.	Room S.F.
. :	Grant Elem. School	22	\$25,291	\$31,605	17050	Children Hospital	70	\$25 <b>,8</b> 55	\$55,468	13356
	Adeline Gray School	7	30,762	57,662	5376	Arizona State Hospital	72	125	55,593	9360
	Lincoln Elem. School	12	46,689	46,882	10656	Sample Hospitals	142	\$ 25 <b>,98</b> 0	\$111,061	22716
	Skiff Elem. School	35	47,512	55,965	30844	•				
	Wilson Hawkins Elo.	2!	28 <i>,5</i> 31	36,199	18506				: •	
.:	Dunbar Elem. School .	17	71,139	84,543	13328					
	Herrera Silverstro El.	8	17,544	14,300	6810	·.		1997) 1997	· .	÷
	Ann Ott School	21	89,562	89,687	15120		<b></b>	·		
	Sample School Bldgs.	<b>!</b> 43	\$357,030	\$4 16, 843	117690					
	Cost Per Sq. Ft.		<u>\$ 3.03</u>	\$ 3.54		Cost Per Sq. Ft.		<u>\$ 1.14</u>	<u>\$ 4,89</u>	
	Cost Per School Room for Region B		\$ 2,497	\$ 2,915		Cost Por Hospital Room for Region B		<u>\$ 183</u>	\$ <u>782</u>	

ø.,

· · · · ·

# COSTINGS OF SAMPLE BUILDINGS (1977 PRICE)

CONSTRUCTION REGION C

Scho	ols	•				Но	spitals		
Name	No.	<u>Cat. A.</u>	Cat. B:	Room	Name R	No.	Cot A.	Cat. B.	Room S.F.
Dunbar Elementary Sc.	34		\$23,859	33320	Jackson Memorial Hos.	735	\$2, 172,927	\$2,118,842	194040
Citrus Grove Ele. Sc.	53	1 <b>94,93</b> 1	183,317	44648	Pan American Hospital	88	202,900	249,107	16896
Wheatley Elementary	34	175,756	229,880	28560	Sample Hospitals	823	\$2,375,827	\$2,36 <b>7</b> ,949	210936
Booker T. Washington	54	289,699	440,367	60750	. <u>-</u>				
Auburndale Ele. Sc.	60	305,593	468,540	50400				۰.	
Kensington Ele, Sc.	43	22,950	31 <b>,221</b>	33540					
Buena Vista Ele. Sc.	22	23,861	75,498	16500					
Robert Lee Junior H.S.	30	111,616	104,015	23400					
Sample School Bidgs.	330 \$	1,124,406	\$1,556,697	291118					
Cost Per Sq. Ft.	_\$	3.86	<u>\$ 5.35</u>		Cost Per Sq. Ft.		\$ 11.26	<u>\$ 11.23</u>	
Cost Per School Room for Region C	<u>\$</u>	3,407	<u>\$ 4,717</u>	. *	Cost Per Hospital Room for Region C		<u>\$ 2,887</u>	\$2,877	

M-3

CONSTRUCTION REGION D

## COSTINGS OF SAMPLE BUILDINGS (1977 PRICE)

#### 

₹ I

Sector Sect	chools		•		Hospital	5		
Name	Room No	<u>Cat. A.</u>	osts Cat. B.	Room S.F.	Name .	Room No	Cat. A. Cat	. B. <u>S.F.</u>
Winthrop Junior H	.S. 45	\$23,671	\$19,312	33238	Winthrop Community H.	54 28	\$ 173, 296 \$ 171 68 705 67	,953 12960 7 941 5241
Julta Word Howe So	. 10	54,005	44,563	8400				
Garfield Junior H.	S. 27	121,889	135,833	19 64	Sample Hospitals	82	\$242,001 \$239	<b>,89</b> 4 18201
Cheverus School	18	125,430	142,615	12258				
Chapman School	18	95,109	103,828	15480				
Williams School	75	342,648	367,447	67155				
Barnes Elementary S	c. <u>52</u>	213,631	338,814	47121			·	
Sample School Bldg.	245	\$976,383 \$	1,152,412	203916			• • • • • • •	
Cost Per Sq. Ft.	3 (a)	\$ 4.79	5.65	£ .				
Cost Per School Room for Region C	n .	<u>\$ 3,985</u> \$	4,703	•	Cost Per Sq. <u>Ftanan</u> Cost Per Hospital Room for Region D		<u>\$ 13.30</u> <u>\$ 13.</u> <u>\$ 2,951</u> \$	<u>18</u> 2,925
Outside NEF 30			•	; .	•			
Edward School		\$ 77,481 \$	83,924	•	Lawrence Memorial Hospi	ital	\$ 37.573 \$ 34	4.081

## COSTINGS OF SAMPLE BUILDINGS (1977 PRICE)

# CONSTRUCTION REGION E

Si Si	chools			Hospitals		÷ • • •		· · .	
 Name		Cost s	Nam	<u> </u>	Costs				
Newton Estates Sc.		at. A. Cat. B. 7,180 \$26,146	S.F. 5400		Cat. A.	<u>Cat. B.</u>			ه دی. د
Longino School	13 52	8,831 91,509	10764	No Sample		÷		•	•
Lake Shore High Sc.	45 173	,756 161,873	29700				. <u>'</u>		
Eastern School	8 33	,828 57,381	6624			у. ^с .		, ¹ .	
College Park H.S.	<b>25</b> 141	,587 71,911	16500						
Woodward Academy	26 77	,426 75,874	19136			<u>.</u> • •			
Fountain School	16 55	,814 58,360	12480	• ·			· · . ·		· .
Crawford Long Sc.	42 209	,484 222,015	42336			94 X	•	۰.	÷.,
Samuel R. Young Sc.	22 69	,244 66,572	17409				· · · ·		· • .
St. John School	10 42	,693 45,239	8640				• .		. •
Sample School Bldgs	213 \$ 885	,843 \$876,880	168989						
Cost Per Sq. Ft.	\$ 5.2	4 \$ 5.19							
Cost Per School Room	<u>\$ 4</u>	,159 <u>\$ 4,117</u>							

#### COSTINGS OF SAMPLE BUILDINGS (1977 PRICE)

## CONSTRUCTION REGION F

Schoo	ls				Hospit	als			
Name	Room No.	<u>Cat. A</u> .	<u>Cat.</u> B.	Room, S.F.	Name	Room No.	Cat. A.	<u>Cat. B</u> .	Room S.F.
Clyde Miller E.S.	5	\$18 <b>,77</b> 0	\$30,706	3000	Fitzsimons Army Hosp.	611	\$965,000	\$ 987,374	75182
Parkland School	23	75,465	76,152	19454					
Sable School	26	143,110	117,034	11407					
Montview School	23	88,950	83,711	18216					
North Junior H.S.	25	116,043	117,505	18000					
Boston Elem.	12	69,720	76,736	11729	1				
Paris School	8	42,833	46,548	8012					
Sample School Bldgs.	122	\$554,892	\$548,392	89818					
Cost Per Sq. Ft.		\$ 6.18	\$ 6,11		Cost Per Sq. Ft.		\$ 12.84	<u>5 13.13</u>	
Cost Per School Room for Region F		\$ 4,548	<u>\$ 4,495</u>		Cost Par Hospital Room for Region F		<u>\$ 1,580 </u>	1,616	
Outside NEF 30					-				
Elyrta School		\$  4,278	\$ 15,267		Denver General Hospital		\$ 77,041	\$ 65,967	

492

Sec. 1



#### TABLE N-I

#### SUMMARY OF PROGRAM COST BY STATE AND CONSTRUCTION REGION

£

			ichools				Hospite	als	
State	No. of Airports	No. of Schools	No. of Students	<u> </u>	<u>st</u>	No. of Hosp.	No. o Patient	f ts <u>Cost</u>	_
				A	<u> </u>			A	<u> </u>
California Hawaii	38 15	23 20	82952 14427	\$28 19770 (46) 	\$ 13296750 (77) 3020850 (20)	 _0	3483 0	\$953020 (I) 0	\$6 137960 (10) 0
Total	53	43	97379	\$28 <b>19</b> 770 (46)	\$ 163 17600 (97)	11	3483	\$ 953020 (1)	\$6  37960 (  0)
Arizona Nevada	3 _5	20 6	1 17 12 5909	\$   19840 (2)  87250 (1)	\$ 1233055 (18) 466400 ( 5)	3 <u> </u>	872 9 900	72650(I) \$ 0	98550 (2) 422340 (1)
Total	18	26	1762	\$ 307090 (3 )	\$ 1699455 (23)	4	1772 \$	i 726 50( l) 1	520890 (3)
Florida Louisiana Puarto Rico	39 11 2	85 8 4	63602 475   	\$2235  80 (24)  60  40 ( 2)	\$ 8287800 (6 l) 665120 (6) 320770 (4)	10 0 0	4007 \$ 0 0	89490 (I) : 0 0	6835590 (9) 0 0
Total	52	97	70018	\$2395320 (26)	\$ 9273690 (71)	10	4007 \$	89490 (1) \$	6835590 (9)
Connecticut Delaware Illinois	5 0 2 [	5 0 65	i9  6 9 0 4 i78	\$0 0 1984350 (24)	\$ 3622 10 (5) 0 4567330 (4 1)	0 0 2	0\$ 0 548	0 0 0	5 0 0 962500 (2)
	State California Hawaii Total Arizona Nevada Total Florida Louisiana Puerto Rico Total Connecticut Delaware Illinois	StateNo. of AirportsCalifornia Hawaii38 15Total53Arizona Nevada13 5Arizona Nevada13 5Total18Florida Louisiana Puerto Rico39 1 2 2Total52Connecticut Delaware Illinois5 2	StateNo. of AirportsNo. of SchoolsCalifornia38123Hawaii1520Total53143Arizona1320Nevada56Total1826Florida3985Louisiana118Puerto Rico24Total5297Connecticut55Delaware00Illinais2165	StateNo. of AirportsNo. of SchoolsNo. of No. of SchoolsCalifornia3812382952Hawaii152014427Total5314397379Arizona132011712Nevada565909Total182617621Florida398563602Louisiana1184751Puerto Rico241665Total529770018Connecticut551916Delaware000Illinais21654 1781	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

*Include 12 Public Health Facilities

il al al a

1.1.1.1

				Schools				Hospit	als	
Construction Region	State A	No. of Airports	No. of Schools	No. of Students	Cost		No. of Hosp.	No. o Patieni	f <u>Cost</u>	•
D					A	В			Α	<u> </u>
(East Central)	Indiana	20	13	6554	5 494 1407 8	¢ 430710 ( 5)	• •	0	¢ ∩	\$ 0
(Cont'd.)	Maine	-8	4	1094		204074 ( 4)	ñ	ň	Ψ Ū	÷ 0
(	Maryland	3	8	4692	135500 ( 1)		1	0.81	ő	31011071
	Massachusetts	Ř	41	206 17	924580 (11)	3015090 (30)	6	1538	132810711	2568620 (5)
	New Hampshi	re 3	6	2636	72-7000 ( 11)	493920 ( 6)	õ	0	0	0
	New Jersev	8	51	27847	569890 (10)	3810020 (41)	Š	999	ŏ	1752400 (5)
	New York	26	180	182373	12002824 (94	16860042 (86)	20	6438	25587 10 (5)	87 3960 (15)
	Ohio	20	25	149 12	669520 ( 7	1914440 (18)	1	186	0	3277 10 (1)
	Pennsylvania	19	24	12169	187306 ( 4)	2173154 (20)	1	186	0	3277 10 (1)
,	Rhode Island	1	· 0	0	0``	0	0	0	0	
	Vermont	i i	Ĩ.	464		89380 ( 1)	0	0	0	
	Virginia	15	14	6694	354690 (	) 893720 (13)	0	0	0	
	West Virginia	9	4	1264	0	239800 ( 4)		0	0	
ant a str	Total	167	44 1	3250  3 \$	17322800 (160	)\$35985560 (281)	36	10075\$	269   520 (6)	\$ 1496301 0 (30
E · ·										
(Great Lakes	Alabama	15	19	9783 \$	5	\$1642640 (19)	0	- 0	0	0
and South)	Arkansas	12	6	3636		601080 ( 6)	0	0	0	0
	Georgia	26	27	17059	989830 (12)	1465890 (15)	1	626	0	144920 (1)
	Kentucky	7	18	12416		2037840 (18)	1	155	0	224090 (I)
	Michigan	26	30	18526	652950 (12)	1766 170 (18)	1	626	0	···    44920 ( )
· · · · · ·	Mississippi	- 17	11	6252		1029250 (11)	0	0	0	0
	North Carolin	a 18'	6	27 12	. ر. ۲ هوه	448750 ( 6)	0	. 0	<b>0</b> 16 e ²	0
	South Carolina	i 16	8	4788		790460 ( 8)	0	0	0	0
*Include 12 Publi	ic Health Facilitie	75								•

TABLE N-I (Cont'd.)

Z-2

nan. Mananan sa kalina sa kalina sa kalina kata sa kalina kalina kalina kalina sa kalina kalina kalina kalina kalin Mananan kalina kalin

TABLE N-1 (Cont'd.)

· ·				Schools				]	Hospitals	
Construction Region	State	No. of Airports	No. of Schools	No. of Student	s <u>Cost</u>		No. of Hosp.	No. o Patien	its <u>Cost</u>	
					<u> </u>	<u></u> B			<u>A</u>	<u> </u>
E (Creat Lakas	Topperco	14	20	12796	\$ 207950 ( 2)	\$ [889630 (18)	2	1252	\$ 0\$	1829290 (2)
(Grear Lakes	Wisconsin	-19	12	7 198		185670 (12)	1	626	' O '	144920 ( 1)
(Cont'd.)	111300113111	<u> </u>					<u> </u>			
	Total	170	157	95  66	\$  850730 (26)	\$ 2857380 ( 3 )	6	3285	0\$	5488  40 (6)
F									•	
(Central)	Alaska	24	0	0	\$ O	\$ 0	0	. 0	\$ 0	\$ 0
	Colorado	12	63	35850	\$2492230 (28)	3802710 (35)	4	5496	1 1236   0(0)	) 345178 Q ( ^b )
	Idaho	7	0	0	0	0	0	·0	0	U O
	owa	12	6	2500	0	449510 (6)	0	0	0	U
	Kansas	14	5	2320	0	418040 (5)	0	0	0	0
	Minnesota	11	19	9384	350220 (4)	136 1990 (15)	1	692	0	728820 (1)
	Missouri	15	- 11	59   4	563990 (6)	525920 (5)	0	0	_ <b>O</b>	0
	Montana	Π.	7	3407	37  0 (2)	4 (3540 (5)	0	· 0	0	· 0
	Nebraska	9	6	2896	0	5 16930 (6)	0	0	· 0	0
	New Mexic	o 13	5	2922	. 0	<u>56  880 (5)</u>	3	584	0	565600 (3)
	North Daka	ta 6	5	1876	· 0	337  30 (5)	0	. 0	0	. 0
	Oklahoma	16	16	7311	· 0	3 2550 (16)	0	0	- j <b>O</b>	0
	Oregón	,0	3	1392	0	251720 (3)	0	. 0	0	. 0
5.5 S	South Dakot	7	4	1983	254690 (3)	107880 (1)	0	0	· 0	0
a ser e s	Teves	.53	17	11830	363840 (4)	1424920 (13)	2	910	· 0	103730 (2)
	l Itah	3		724	0	1 12380 (1)	0	0	. Q	0
	Weshington	15	20	9544	õ	1258600 (20)	2	502	U	486420 (2)
•	Wyoming	12	5	2320	.0.	4 18040 (5)		0	0	0
	Total	248	193	102 173	\$4  3868 0 (47	)\$13273740 (146	) 22	8 184	\$1123610 ( 4	6) \$6336350 (16)

*Include 12 Public Health Facilities

N Lu

de moli i .

TABLE N-1 (Cont'd.)

<b>•</b> • • • •			hools			Hospitals*				
Construction Region	No. of Airports	No. of Schools	No. of Students		Cost		No. of Hosp.	No. of Patients		Cost
All Region Total	708	1057	707370	A \$28834390	(308)	<u>8</u> 589407425 (749)	89	30806	A \$4930290	<u> </u>
25% Mark-up*	**			7208600		2235 1860			1232570	10070490
		· .		\$36042990		\$111759285			\$6  62860	\$50352430
Total C	osts (A+B)			\$ 147 ( \$ 147	7,802, 7,800,	275 000 )			\$56,5 5 (\$56,500	5,290 9,000 )
Grand	Fotal Cost (S	ichools and Ho	ospitals)			≈ \$204,300,000	)			,

Z

≈ \$204,300,000

* Include 12 Public Health Factilities

** Include Overhead - 10%, Profit - 10%, and Contingency - 5%,

والمار المراجع والمستح المتحافظ والمحتلة والمعالة والمعالة والمعالة والمعالة والمعالة والمعالة والمعالة والمعا

#### APPENDIX O

ľ

0

o

0

o

4

0

#### MEETINGS

In the course of meetings, the following people offered opinions and views.

 Mr. Beavers, Facilities Director of College Park High School, Atlanta, Georgia;

Mr. Phillips, Director of School Plant Planning, Miami, Florida;

 Mr. Richard Via, Facilities Department, Roanoke School System, Roanoke, Virginia;

o Mr. Murphy, Buffalo School System, Buffalo, New York;

- Mr. Heaslip, Construction Management Associates, New Orleans, Louisiana;
- Mr. Richard E. Mooney, Director of Aviation, Massachusetts Port Authority, Boston, Massachusetts;
  - Peter Metz, Massachusetts Executive Office of Transportation and Construction, Boston, Massachusetts;

o Jim Prendergast, Mayor's Office, City of Revere, Massachusetts

David Charak, Mayor's Office, City of Chelsea, Massachusetts;

Thomas Reilly, Selectman, Winthrop, Massachusetts;

- Burt Lockwood, Assistant Airport Manager, Los Angeles International Airport, Los Angeles, California;
- Dr. John W. Meyer, Superintendent of Schools, El Segundo Unified School District, California;

Mrs. V. Bergen, Principal of Imperial Elementary School, Los Angeles California.

#### APPENDIX P

#### STATISTICAL ANALYSIS

This section describes the statistical approaches used to analyze the collected data.

A variety of mathematical analyses were performed including:

1. Averaging

T

2. Analysis of Variance

Averaging

Simple averages were not always used. Many average calculations were performed on the basis of frequency. For example, in determining the average window size and number, and the average room size and number, the frequency average was used in order to develop more representative averages.

The following shows an example of the difference between the frequency average and the simple average. Since the actual numbers of windows directly relate to cost, the simple average would lead to erroneous cost estimates.

FREQ UENCY AVERAGE	SIMPLE AVERAGE				
Building A	Building A				
500 Rooms x 3 Windows per Room	10 square feet				
x 10 square feet = 15,000					
Building B	Building B				
100 Rooms x 3 windows x 40 $ft^2 =$	40 square feet				
12,000					
15.000 + 12.000	10 + 40				

1800 windows

Average =  $15 \text{ ft}^2$ 

Average =  $25 \text{ ft}^2$ 

#### Analyses of Variance

Analyses of variance were performed to ascertain the significance of differences in means and totals. For example, an analysis of variance was performed on the regional cost correction factors in order to determine whether or not the cost correction factors were in fact different. The regional factors were based on average data developed for cities. Averaging data in this manner sometimes produces meaningless averages. If the averages are not sufficiently different from one another, the value of the correction factors has been averaged away. This analysis is performed to insure that this has not happened. The following shows the computational formulas used in the analysis.

ANALYSIS of VARIANCE

$$SS_{a} = \overline{n_{h}} \qquad [(\Sigma A^{2})/q - G^{2}/pq]$$

$$SS_{a} = \overline{n_{h}} \qquad [(\Sigma B^{2})/p - G^{2}/pq]$$

$$SS_{ab} = \overline{n_{h}} \qquad [(\Sigma \overline{AB} - (\Sigma A^{2}/q) - (\Sigma B^{2}/p) + (G^{2}/pq)]$$

$$SS_{w} \cdot cell = \Sigma \Sigma SS_{ij}$$

 $= \frac{pq}{\Sigma\Sigma(1/n_{ij})}$ 

 $\overline{n}_{h}$ 

#### APPENDIX Q

## LIST OF A IRPORTS FOR DATA SHEET - BY FAA REGION ł

.

٠

FAA Region	Airport Name	Location
# LANE	Logan International	Boston, Massachusetts (L)*
	Bradley International	Hartford, Connecticut (M)**
	Portland International	Portland, Maine
	Hartford Brainard	Hartford, Connecticut
	Barnse Municipal	Westfield, Massachusetts
	Danbury Municipal	Danbury, Connecticut
	Fitchburg Municipal	Fitchburg, Massachusetts
#2 AEA	J.F.Kennedy International	New York, New York (L)
	La Guardia	New York, New York (L)
	Newark	Newark, New Jersey (L)
	Philadelphia International	Philadelphia, Pennsylvania (L)
	Greater Pittsburgh	Pittsburgh, Pennsylvania (L)
	Washington National	Alexandria, Virginia (L)
	Dulles International	Chentilly, Virginia (L)
	Greater Buffalo International	Buffalo, New York (M)
	Rochester-Monroe County	Rochester, New York (M)
	Clarence E. Hancock	Syracuse, New York (M)
	Albany County	Albany, New York (M)
	Baltimore-Washington International	Baltimore, Maryland (M)
	Norfolk Regional	Norfolk, Virginia (M)
	L. I. MacArthur	Islip, New York
	Richard E. Byrd Flying Field	Richmond, Virginia
	Morristown Municipal	Morristown, New Jersey
	North Philadelphia	Philadelphia, Pennsylvania
	Roanoke Municipal	Roanoke, Virginia
	Frederick Municipal	Frederick, Maryland
3 ASO	William B. Hartsfield International	Atlanta, Georgia (L)
	Miami International	Miami, Florida (L)
	Ft. Lauderdale – Hollywood	Ft. Lauderdale, Florida (L)
	Tampa International	Tampa, Florida (L)
	Standiford	Louisville, Kentucky (M)
	Greensboro–High Point–Winston Salem Regional	Greensboro, North Carolina (M

*Large Hub Airport **Medium Hub Airport

#### FAA Region

(Continued)

Raleigh-Durham

Airport Name

Douglas Municipal Nashville Metropolitan Memphis International Birmingham Municipal Jacksonville International McCoy AFB Palm Beach International Puerto Rico International St. Petersburg, Clearwater McGhee Tyson Fulton County Opa Locka Key West International Capital City **Greater Cinncinati** Imeson Airport

#4 AGL :

#5 ASW

Minneapolis-St. Paul International O'Hare International Midway Cleveland Hopkins International

Detroit Metropolitan Wayne County General Mitchell Field Indianopolis Municipal James M. Cox Dayton Municipal Port Columbus International Evansville Dress Regional Kent County Pontiac Municipal Burke Lakefront Marion Municipal Kokomo Municipal Lost Nation

Dallas-Fort Worth Regional New Orleans International Houston Inter-continental Albuquerque International Tulsa International Will Rogers World El Paso International San Antonio International Ryan Field

Location Raleigh-Durham, North Carolina (M) Charlotte, North Carolina (M) Nashville, Tennessee (M) Memphis, Tennessee (M) Birmingham, Alabama (M) Jacksonville, Florida (M) Orlando, Florida (M) 😳 West Palm Beach, Florida (M) San Juan, Puerto Rico (L) St. Petersburg, Florida Knoxville, Tennessee Atlanta, Georgia Miami, Florida Key West, Florida Frankfort, Kentucky Covington, Kentucky (M) Jacksonville, Florida

Minneapolis-St. Paul, Minnesota (L) Chicago, Illinois (L) Chicago, Illinois (L) Cleveland, Ohio (L) Detroit, Michigan (L) Milwaukee, Wisconsin (M) Indianapolis, Indiana (M) Dayton, Ohio (M) Columbus, Ohio (M) Evansville, Indiana Grand Rapids, Michigan Pontiac, Michigan Cleveland, Ohio Marion, Ohio Kokomo, Indiana Mentor, Ohio

Dailas-Ft. Worth, Texas (L) New Orleans, Louisiana (L) Houston, Texas (L) Albuqueique, New Mexico (M) Tulse, Oklahoma (M) Oklahoma City, Oklahoma (M) El Paso, Texas (M) San Antonio, Texas (M) Baton Rouge, Louisiana

	(Continued)							
FAA Region	Airport Name Lubbock Regional Meacham Field Lakefront Lafayette Cox Field Shreveport	Location Lubbock, Texas Fort Worth, Texas New Orleans, Louisiana Lafayette, Louisiana Paris, Texas Shreveport, Louisiana						
#6 ACE	Kansas City International Lambert-St. Louis Municipal Eppley Airfield Wichita Municipal Fairfax Municipal Springfield Municipal Columbus Municipal Independence Municipal Des Moines Municipal Tri-City	Kansas City, Missouri (L) St. Louis, Missouri (L) Omaha, Nebraska (M) Wichita, Kansas Kansas City, Missouri Springfield, Missouri Columbus, Nebraska Independence, Kansas Des Moines, Iowa Cherryvale, Kansas						
#7 ARM	Stapleton International Salt Lake City International Great Falls International Joe Foss Field Peterson Field Cedar City Municipal Gregory Municipal	Denver, Colorada (L) Salt Lake City, Utah (M) Great Falls, Montana Sioux Falls, South Dakota Colorado Springs, Colorado Cedar City, Utah Gregory, South Dakota						
#8 AWE	San Francisco International Los Angeles International McCarran International Metropolitan Oakland International San Diego International Reno International Phoenix Sky Harbor International Tueson International Sacramento Metropolitan Santa Barbara Van Nuys Buckeye Municipal Rohnerville Carson Imperial County Hollywood Burbank Airport Clover Field Luke Air Force Field	San Francisco, California (L) Los Angeles, California (L) Las Vegas, Nevada (L) Oakland, California (L) San Diego, California (M) Reno, Nevada (M) Phoenix, Arizona (M) Tucson, Arizona (M) Sacramento, California Santa Barbara, California Los Angeles, California Buckeye, Arizona Fortuna, California Carson City, Nevada Imperial, California Burbank, California Beverly Hills, California Valencia, Arizona						

** ....

٠

÷ . .

والمراجب برا

#### (Continued)

10

FAA Region Airport Name Location Seattle, Washington (L) Spokane, Washington (M) Portland, Oregon (M) Eugene, Oregon Boise, Idaho Hillsboro, Oregon Moses Lake, Washington #9 ANW Seattle-Tacoma International Spokane International Portland International Mahlon Sweet International **Boise Air Terminal** Hillsboro **Grant County** Honolulu, Hawaii (L) Hilo, Hawaii (L) Kahului, Hawaii (M) Lihue, Hawaii (M) Kailua, Hawaii Kailua, Hawaii Maui, Hawaii #10 APC Honolulu International General Lyman Field Kahului Lihue Heela Hana Airport Maul Airport # II AAL Anchorage International Fairbanks International Anchorage, Alaska (M) Fairbanks, Alaska Nenana Airfield Nenana, Alaska

4U.S. GOVERNMENT PRINTING OFFICE: 1977 727-076/1156 1-3

Q-4